Что такое спонтанные мутации. Сходство и различие спонтанных и индуцированных мутаций



Индуцированный мутагенез – это искусственное получение мутаций с помощью мутагенов различной природы. Впервые способность ионизирующих излучений вызывать мутации была обнаружена Г.А. Надсоном и Г.С. Филлиповым. Затем, проводя обширные исследования, была установлена радиобиологическая зависимость мутаций. В 1927 году американским ученым Джозефом Мюллером было доказано, что частота мутаций увеличивается с увеличением дозы воздействия. В конце сороковых годов открыли существование мощных химических мутагенов, которые вызывали серьезные повреждения ДНК человека для целого ряда вирусов.

Одним из примеров воздействия мутагенов на человека может служить эндомитоз –удвоение хромосом с последующим делением центромер, но без расхождения хромосом.

Роль генотипа и внешней среды в проявлении признаков.

Первоначально развитие генетики сопровождалось представлением о фатальности влияния наследственности на структуру, функцию и психологические признаки человека.

Однако уже с конца XIX века многие исследователи отмечали, что свойства любого организма могут меняться под воздействием условий внешней среды. Еще в 1934 г. профессор С.Н. Давиденков опубликовал работу "Проблемы полиморфизма наследственных болезней нервной системы", в которой он подчеркивал, что вариабельность течения этих заболеваний может быть вызвана влиянием как других генов, так и внешней среды. Даже синтез одного белка является сложным и многоэтапным процессом, который регулируется на всех стадиях (транскрипции, процессинга, транспорта РНК из ядра, трансляции, формирования вторичной, третичной и четвертичной структур). Кроме того, время, количество, скорость и место его образования определяются множеством различных генетических и средовых факторов. Целостный организм, включающий большое количество разнообразных белков, функционирует как единая система, в которой развитие одних структур зависит от функции других и необходимости приспособления к меняющимся условиям внешней среды.

Так, например, патологические изменения гена контролирующего фермент фенилаланингидроксилазу, приводят к нарушению обмена аминокислоты фейилаланина. В результате поступающий с белком пищевых продуктов фенилаланин накапливается в организме человека, являющегося гомозиготой по аномальному гену, что вызывает поражение нервной системы. Но специальная диета, ограничивающая поступление с пищей этой аминокислоты, обеспечивает ребенку нормальное развитие. Таким образом, фактор внешней среды (в данном случае диета) меняет фенотипическое действие гена, в которых существует организм человека, могут модифицировать детерминированные признаки. Например, рост ребенка контролируется целым рядом пар нормальных генов, регулирующих обмен гормонов, минералов, пищеварение и т.д. Но даже если изначально генетически определен высокий рост, а человек живет в плохих условиях (недостаток солнца, воздуха, неполноценное питание), то это приводит к низкорослости. Уровень интеллекта будет выше у человека, получившего хорошее образование, нежели у ребенка, который воспитывался в плохих социальных условиях и не мог учиться.

Таким образом, развитие любого организма зависит и от генотипа, и от факторов внешней среды. Это означает, что аналогичный у двух особей генотип не обеспечивает однозначно одинаковый фенотип, если эти индивиды развиваются в разных условиях.

Только генотип или только факторы внешней среды не могут определить формирование фенотипическнх характеристик какого-либо признака. Так, например, нельзя определить уровень интеллекта человека, не контактировавшего с факторами внешней среды - таких людей нет.

Важной задачей генетики является уточнение роли наследственных и внешнесредовых факторов в формировании того или иного признака. Фактически необходимо оценить степень обусловленности количественных характеристик организма генетической изменчивостью (т.е. генетическими различиями между особями) или средовой изменчивостью (т.е. различиями внешних факторов). Для количественной оценки этих воздействий американский генетик Дж. Лаш ввел термин "наследуемость".

Наследуемость отражает вклад генетических факторов в фенотипическое проявление конкретного признака. Этот показатель может иметь значение в интервале от 0 до 1 (0-100%). Чем ниже уровень наследуемости, тем меньше роль генотипа в изменчивости данного признака. Если наследуемость приближается к 100%, то фенотипическая изменчивость признака почти полностью определяется наследственными факторами.

Мутации (от латинского mutatio – перемена) – это изменение генов и хромосом, проявляющееся в изменении свойств и признаков организмов. Описал их в 1901 году голландский учёный Де Фриз. Он же заложил основы и теории мутаций. Процесс образования мутаций во времени и пространстве называется мутагенез . Вещества, вызывающие мутации в клетках — мутагены.

В зависимости от происхождения различают спонтанные и индуцированные мутации.

Генеративные и соматические мутации.

Мутации могут возникать на всех стадиях развития организма и поражать гены и хромосомы как в половых клетках, так и в соматических. Поэтому по типу клеток различают генеративные и соматические мутации . Генеративные мутации происходят в половых клетках и в этом случае передаются следующим поколениям. Соматические мутации происходят в любых других соматических клетках организма; они провоцируют рак, нарушают иммунную систему, уменьшают продолжительность жизни. Соматические мутации не передаются по наследству. Большая часть канцерогенных веществ вызывает мутации в соматических клетках.

Спонтанные и индуцированные мутации.

Спонтанные мутации (самопроизвольное изменение в совокупности генов организма данного вида) – те мутации, которые возникают у организмов в нормальных природных условиях без видимых причин; они возникают как ошибки при воспроизведении генетического материала, поскольку редупликация не происходит с абсолютной точностью. Длительное время считалось, что спонтанные мутации являются беспричинными. Сейчас же пришли к выводу, что они являются результатом естественных процессов, протекающих в клетках. Они возникают в условиях природного радиоактивного фона Земли в виде космического излучения, радиоактивных элементов на поверхности Земли, радионуклидов в клетках организмов. Спонтанная мутация может возникнуть в любой период индивидуального развития и поразить любую хромосому или ген. Частота встречаемости спонтанных мутаций, например, 1:100000.

Индуцированные мутации возникают в результате действия мутагенов, нарушающих процессы, происходящие в клетке.

Если сравнить частоту спонтанных и индуцированных мутаций клеток организмов при обработке мутагеном и без него, то очевидно, что если частота мутаций повышается в 100 раз в результате воздействия мутагена, то одна мутация будет спонтанная, остальные индуцированные.

Факторы мутагенеза.

В зависимости от локализации в клетке различают генные и хромосомные мутации . Генные, или точечные, мутации заключаются в изменении индивидуальных генов (выпадение, вставка или замена одной пары нуклеотидов. Хромосомные мутации бывают нескольких видов и затрагивают:

    изменение структуры хромосом (крупные перестройки в отдельных фрагментах ДНК):

Делеции (выпадение числа нуклеотидов);

Дупликации (повторение фрагментов ДНК, в результате чего происходит её удлинение);

Инверсии (поворот участка хромосом на 180 0);

Транслокации (перенос участка хромосомы в новое положение в той или уже другой хромосоме).

Мутации, поражающие структуру хромосом, называют хромосомными перестройками , или аберрациями.

    изменение количества хромосом:

Полиплоидия (увеличение кратного набора хромосом);

Гаплоидия (уменьшение всего набора хромосом);

Анеуплоидия (нарушение нормального количества хромосом из-за добавления или удаления одной или более хромосом).

Мутации, затрагивающие изменение числа хромосом в клетках организма, называются геномными . Геном – совокупность генов организма данного вида.

Мутационные процессы происходят не только у человека, но и у животных и растений. Поэтому мы рассматриваем общие закономерности. Хромосомные аберрации встречаются у растений, животных и человека. Ведут к нарушению здоровья. Полиплоидия встречается чаще у растений, у животных и человека – редка (число хромосом может увеличиваться в 3, 4, 5 раз). Гаплоидия встречается также в основном у растений (около 800 видов растений имеют гаплоиды), у животных — очень редка, у человека неизвестна. Анеуплоидия часто встречается у растений, у животных и у человека. Делеции – наиболее частые и опасные формы повреждения хромосом для человека. Некоторые дупликации вредны и даже летальны. Повтор сегмента хромосомы может быть малым, касаясь одиночного гена, или большим, затрагивая большое количество генов. Могут быть и безвредные дупликации. Транслокации происходят в результате разрыва хромосом. Могут иметь размеры от небольших до значительных.

Мутации могут оказаться незамеченными, если они затронули второстепенные участки наследственных структур, но могут приводить к серьёзным расстройствам, вплоть до гибели организма.

Возникшие повреждения в ДНК не обязательно реализуются в мутации. Они могут бесследно исчезнуть, благодаря существующей в клетке эффективной системе восстановления генетических повреждений (репарации). Проявление мутантного гена может быть подавлено действием другого гена. В этом случае мутантный ген может передаваться из поколения в поколение и проявиться только в случае, когда в зародышевой клетке встретятся два идентичных мутантных гена. Некоторые мутации проявляются только в определённых условиях существования. Например, при определённой температуре культивирования мутантных микроорганизмов.

Спонтанные – это мутации, которые возникают самопроизвольно, без участия со стороны экспериментатора.

Индуцированные – это те мутации, которые вызваны искусственно, с использованием различных факторов мутагенеза .

Вообще, процесс образования мутаций называется мутагенезом, а факторы, вызывающие мутации, – мутагенами.

Мутагенные факторы подразделяются на физические , химические и биологические .

Частота спонтанных мутаций одного гена составляет , для каждого гена каждого организма она своя.

Причины спонтанных мутаций не совсем ясны. Раньше считали, что их вызывает естественный фон ионизирующих излучений . Однако оказалось, что это не так. Например, у дрозофилы естественный радиационный фон вызывает не более 0,1% спонтанных мутаций.

С возрастом последствия от воздействия естественного радиационного фона могут накапливаться, и у человека от 10 до 25% спонтанных мутаций связаны с этим.

Второй причиной спонтанных мутаций являются случайные повреждения хромосом и генов во время деления клетки и репликации ДНК вследствие случайных ошибок в функционировании молекулярных механизмов.

Третьей причиной спонтанных мутаций является перемещение по геному мобильных элементов , которые могут внедриться в любой ген и вызвать в нем мутацию.

Американский генетик М. Грин показал, что около 80% мутаций, которые были открыты как спонтанные, возникли в результате перемещения мобильных элементов.

Индуцированнные мутации впервые обнаружили в 1925 г . Г.А. Надсон и Г.С. Филиппов в СССР. Они облучали рентгеновскими лучами культуры плесневых грибов Mucor genevensis и получили расщепление культуры «на две формы или расы, отличающиеся не только друг от друга, но и от исходной (нормальной) формы». Мутанты оказались стабильными, так как после восьми последовательных пересевов сохраняли приобретенные свойства. Их статья была опубликована только на русском языке, к тому же в работе не использовались какие-либо методы количественной оценки действия рентгеновских лучей, поэтому она осталась малозамеченной.

В 1927 г. Г. Мёллер сообщил о действии рентгеновских лучей на мутационный процесс у дрозофилы и предложил количественный метод учета рецессивных летальных мутаций в Х-хромосоме (ClB ), который стал классическим.

В 1946 г. Мёллеру была присуждена Нобелевская премия за открытие радиационного мутагенеза. В настоящее время установлено, что практически все виды излучений (в том числе ионизирующая радиация всех видов – a, b, g; УФ-лучи, инфракрасные лучи) вызывают мутации. Их называют физическими мутагенами .



Основные механизмы их действия :

1) нарушение структуры генов и хромосом за счет прямого действия на молекулы ДНК и белков;

2) образование свободных радикалов , которые вступают в химическое взаимодействие с ДНК;

3) разрывы нитей веретена деления ;

4) образование димеров (тиминовых).

В 30-х гг. был открыт химический мутагенез у дрозофилы: В. В. Сахаров (1932 ), М. Е. Лобашев и Ф. А. Смирнов (1934 ) показали, что некоторые соединения, такие как йод , уксусная кислота , аммиак , способны индуцировать рецессивные летальные мутации в Х-хромосоме.

В 1939 г. Сергей Михайлович Гершензон (ученик С.С. Четверикова) открыл сильный мутагенный эффект экзогенной ДНК у дрозофилы. Под влиянием идей Н.К. Кольцова о том, что хромосома является гигантской молекулой, С.М. Гершензон решил проверить свое предположение, что именно ДНК является такой молекулой. Он выделил ДНК из тимуса и добавил ее в корм личинкам дрозофилы. Среди 15 тыс. контрольных мух (т.е. без ДНК в корме) не было ни одной мутации, а в опыте среди 13 тыс. мух было обнаружено 13 мутантов.

В 1941 г. Шарлоттта Ауэрбах и Дж. Робсон показали, что азотистый иприт индуцирует мутации у дрозофилы. Результаты работы с этим боевым отравляющим веществом были опубликованы только в 1946 г., после окончания Второй мировой войны. В том же 1946 г. Рапопорт (Иосиф Абрамович) в СССР показал мутагенную активность формальдегида .



В настоящее время к химическим мутагенам относят:

а) природные органические и неорганические вещества;

б) продукты промышленной переработки природных соединений – угля, нефти;

в) синтетические вещества , ранее не встречавшиеся в природе (пестициды, инсектициды и т.д.);

г) некоторые метаболиты организма человека и животных.

Химические мутагены вызывают преимущественно генные мутации и действуют в период репликации ДНК.

Механизмы их действия :

1) модификация структуры оснований (гидроксилирование, дезаминирование, алкилирование);

2) замена азотистых оснований их аналогами;

3) ингибиция синтеза предшественников нуклеиновых кислот.

В последние годы используют так называемые супермутагены :

1) аналоги оснований;

2) соединения, алкилирующие ДНК (этилметансульфонат, метилметансульфонат и др.);

3) соединения, интеркалирующие между основаниями ДНК (акридины и их производные).

Супермутагены повышают частоту мутаций на 2-3 порядка.

К биологическим мутагенам относятся:

а) вирусы (краснухи, кори и др.);

б) невирусные инфекционные агенты (бактерии, риккетсии, простейшие, гельминты);

в) мобильные генетическиеэлементы .

Механизмы их действия :

1) геномы вирусов и мобильных элементов встраиваются в ДНК клеток хозяина;

Индуцированный мутагенез , начиная с конца 20-х годов XX века, используют для селекции новых штаммов, пород и сортов. Наибольшие успехи достигнуты в селекции штаммов бактерий и грибков – продуцентов антибиотиков и других биологически активных веществ.

Так, удалось повысить активность продуцентов антибиотиков в 10-20 раз, что позволило значительно увеличить производство соответствующих антибиотиков и резко снизило их стоимость. Активность лучистого гриба – продуцента витамина В 12 удалось повысить в 6 раз, а активность бактерии – продуцента аминокислоты лизина – в 300-400 раз.

Использование мутаций карликовости у пшеницы позволило в 60-70 годах резко увеличить урожай зерновых культур, что было названо «зеленой революцией ». Пшеница карликовых сортов имеет укороченный толстый стебель, устойчивый к полеганию, он выдерживает повышенную нагрузку от более крупного колоса. Использование этих сортов позволило существенно увеличить урожаи (в некоторых странах в несколько раз).

Автором «зеленой революции» считают американского селекционера и генетика Н. Борлауга , который в 1944 г., в возрасте 30 лет, поселился и стал работать в Мексике. За успехи в выведении высокопродуктивных сортов растений в 1970 году ему была присуждена Нобелевская премия мира.


11
. Генные мутации

Генные (точковые) мутации связаны с относительно небольшими изменениями последовательностей нуклеотидов. Генные мутации подразделяются на изменения структурных генов и изменения регуляторных генов .

Типы мутаций:

1. Вставка (инсерция) или выпадение (делеция) пары или нескольких пар нуклеотидов, они приводят к сдвигу рамки считывания . В зависимости от места вставки или выпадения нуклеотидов изменяется меньшее или большее число кодонов.

2. Транзиция – замена оснований пуринового на пуриновое или пиримидинового на пиримидиновое, например:А « Г, Ц « Т.

3. Трансверзия – замена пуринового основания на пиримидиновое или пиримидинового на пуриновое. Например: А « Ц, Г « Т.

Изменения структурных генов приводят:

а) к миссенс-мутациям – изменению смысла кодонов и образованию других белков;

б) к нонсенс-мутациям – образованию СТОП-кодонов (УАА,УАГ,УГА).

Результаты изменения регуляторных генов :

1. Белок-репрессор не подходит к оператору («ключ не входит в замочную скважину ») – структурные гены работают постоянно (белки синтезируются все время).

2. Белок-репрессор плотно «присоединяется» к оператору и не снимается индуктором («ключ не выходит из замочной скважины ») – структурные гены постоянно не работают и не синтезируются белки, закодированные в данном опероне.

3. Нарушение чередования репрессии и индукции – при отсутствии индуктора специфический белок синтезируется, а при его наличии белок не синтезируется. Это связано с мутациями гена-регулятора или операторной последовательности.

Генные мутации являются основной причиной генных болезней , частота проявления которых в популяциях человека достигает 1-2%.

Мутационная изменчивость является результатом мутаций.

Мутация (от лат. “mutazio” - изменение, перемена) –наследственное изменение генотипа (это изменение наследственного материала, приводящее к появлению новых признаков организма, способных передаваться последующему поколению. Термин “мутация” ввел в науку в 1901 г. Голландский генетик Г. де Фриз, описавший самопроизвольные мутации у растений. Мутации - это стойкие изменения затрагивающие как целые хромосомы, их части, отдельные гены. Чаще всего, мутации это мелкие, едва заметные отклонения от нормы.

Дарвин назвал наследственную изменчивость неопределенной (индивидуальной), подчеркивая ее случайный и относительно редкий характер.

Мутации являются источником генетического разнообразия, составляя резерв наследственной изменчивости.

Классификация мутаций

1. По характеру проявления:

проявления бывают доминантными и рецессивными . Мутации нередко понижают жизнеспособность или плодовитость. Мутации, резко снижающие жизнеспособность, частично или полностью останавливающие развитие, называют полулетальными а несовместимые с жизнью - летальными.

2. По месту возникновения:

Мутация, возникшая в половых клетках, не влияет на признаки данного организма, а проявляется только в следующем поколении. Такие мутации называют генеративными. Если изменяются гены в соматических клетках, такие мутации проявляются у данного организма и не передаются потомству при половом размножении. Но при бесполом размножении, если организм развивается из клетки или группы клеток, имеющих изменившийся - мутировавший - ген, мутации могут передаваться потомству. Такие мутации называют соматическими.

3. По уровню возникновения:

Генные мутации – изменение строения одного гена. Это изменение в последовательности нуклеотидов: выпадение, вставка, замена и т.п. Например, замена А на Т. Причины – нарушения при удвоении (репликации) ДНК. Примеры: серповидноклеточная анемия, фенилкетонурия.

Хромосомные мутации – изменение строения хромосом: выпадение участка, удвоение участка, поворот участка на 180 градусов, перенос участка на другую (негомологичную) хромосому и т.п. Причины – нарушения при кроссинговере. Пример: синдром кошачьего крика.

Геномные мутации – изменение количества хромосом. Причины – нарушения при расхождении хромосом. В зависимости от характера изменения числа хромосом различают:

  • Полиплоидия – кратные изменения (в несколько раз, например, 12 → 24). У животных не встречается, у растений приводит к увеличению размера.
  • Анеуплоидия – изменения на одну-две хромосомы. Например, одна лишняя двадцать первая хромосома приводит к синдрому Дауна (при этом общее количество хромосом – 47).

В зависимости от характера изменения числа хромосом различают:

Спонтанные мутации - возникают при нормальных условиях жизни, зависят от внешних и внутренних факторов, возникают в соматических и генеративных клетках.

Индуцированные мутации - это искусственное получение мутаций с помощью мутагенов различной природы. Впервые способность ионизирующих излучений вызывать мутации была обнаружена Г.А. Надсоном и Г.С. Филлиповым. В 1927 году американским ученым Джозефом Мюллером было доказано, что частота мутаций увеличивается с увеличением дозы воздействия. Ученые полагают, что факт наследования мутаций вызывает определенные опасения, поскольку это может увеличить риск развития рака. Азиатов от алкоголизма защищает ген-мутант. Почему процент алкоголиков в азиатских странах значительно ниже, чем в странах, где основную часть населения составляет так называемое белое население.

Факторы среды, вызывающие появление мутаций называютсямутагенами .

Различают:

Физические мутагены

- ионизирующее и ультрафиолетовое излучение;

Чрезмерно высокая или низкая температура;

Химические мутагены

Нитраты, нитриты, пестициды, никотин, метанол, бензпирен.

Некоторые пищевые добавки, например, ароматические углеводороды;

Продукты переработки нефти;

Органические растворители;

Лекарственные препараты, препараты ртути, иммунодепрессанты.

Биологические мутагены

Некоторые вирусы (вирус кори, краснухи, гриппа)

Продукты обмена веществ (продукты окисления липидов);

Свойства мутации:

  • мутации наследственны, т.е. передаются из поколения в поколение.
  • мутации возникают внезапно (спонтанно), ненаправленно.
  • мутации не направлены – мутировать может любой локус, вызывая изменения как незначительных, так и жизненно важных признаков в любом направлении.
  • одни и те же мутации могут возникать повторно.
  • мутации индивидуальны, т.е. возникают у отдельных особей.
  • мутации могут быть полезными,вредными, нейтральными; доминантными и рецессивными.

Значение мутаций

Служат резервом наследственной изменчивости (сохраняются в популяции в скрытом-рецессивном) виде, являются материалом для эволюции.

Причина многих наследственных заболеваний и уродств.

Индуцированные мутации “поставляют” материал для искусственного отбора и селекции.

МУТАГЕНЕЗ - процессы-реакции в генном аппарате биологического объекта, при которых происходят изменения в строении генов, передающиеся по наследству. Такие изменения могут затрагивать отдельные нуклеотиды или группы их, сопровождаясь в некоторых случаях изменениями в морфологии хромосом. Изменения уже одного нуклеотида, входящего в состав триплета, приводят к образованию иной аминокислоты, входящей в состав белка, и могут привести к изменению соответствующего признака.

Мутагенез можно условно делить на спонтанный , когда мутации возникают в "нормальных" условиях роста, и индуцированный вследствие применения физических или химических мутагенов.

Спонтанный мутагенез зависит от внешних и внутренних факторов (биологические, химические, физические). Спонтанные мутации возникают у человека в соматических и генеративных тканях. Метод определения спонтанных мутаций основан на том, что у детей появляется доминантный признак, хотя у его родителей он отсутствует. При спонтанном мутагенезе могут происходить все типы наследственных перемен, которые наблюдаются при индуцированном мутагенезе: замена пар аденин-тимин или чаще гуанин-цитозин, ошибочное спаривание двух пуринов или двух пиримидинов, делеции, включения и другие изменения. Каждый биологический объект характеризуется определенным фоном спонтанных мутаций, которые с разной частотой затрагивают те или иные генетические признаки.

Индуцированный мутагенез - это искусственное получение мутаций с помощью мутагенов различной природы. Впервые способность ионизирующих излучений вызывать мутации была обнаружена Г.А. Надсоном и Г.С. Филлиповым. Затем, проводя обширные исследования, была установлена радиобиологическая зависимость мутаций. В 1927 году американским ученым Джозефом Мюллером было доказано, что частота мутаций увеличивается с увеличением дозы воздействия. В конце сороковых годов открыли существование мощных химических мутагенов, которые вызывали серьезные повреждения ДНК человека для целого ряда вирусов. Одним из примеров воздействия мутагенов на человека может служить эндомитоз - удвоение хромосом с последующим делением центромер, но без расхождения хромосом.

До сих пор речь шла о спонтанных мутациях, т.е. происходящих без какой-либо известной причины. Возникновение мутаций – процесс вероятностный, и, соответственно, существует набор факторов, которые на эти вероятности влияют и изменяют их. Факторы, вызывающие мутации, называются мутагенами, а процесс изменения вероятностей появления мутации – индуцированном. Мутации, возникающие под влиянием мутагенов, называют индуцированными мутациями.

В современном технологически сложном обществе люди подвергаются воздействию самых разных мутагенов, поэтому изучение индуцированных мутаций приобретает все большее значение.

К физическим мутагенам относятся все виды ионизирующих излучений (гамма- и рентгеновские лучи, протоны, нейтроны и др.), ультрафиолетовое излучение, высокие и низкие температуры; к химическим – многие алкилирующие соединения, аналоги азотистых оснований нуклеиновых кислот, некоторые биополимеры (например, чужеродные ДНК и РНК), алкалоиды и многие другие химические агенты. Некоторые мутагены увеличивают частоту мутаций в сотни раз.

К числу наиболее изученных мутагенов относятся радиация высоких энергий и некоторые химические вещества. Радиация вызывает такие изменения в геноме человека, как хромосомные аберрации и потерю нуклеотидных оснований. Частота встречаемости мутаций половых клеток, индуцированных радиацией, зависит от пола и стадии развития половых клеток. Незрелые половые клетки мутируют чаще, чем зрелые; женские половые клетки – реже, чем мужские. Кроме того, частота мутаций, индуцированных радиацией, зависит от условий и дозы облучения.

Соматические мутации, возникающие в результате радиации, представляют собой основную угрозу населению, поскольку часто появле ние таких мутаций служит первым шагом на пути образования раковых опухолей. Так, одно из наиболее драматических последствий Чернобыльской аварии связано с возрастанием частоты встречаемости разных типов онкологических заболеваний. Например, в Гомельской области было обнаружено резкое увеличение числа детей, больных раком щитовидной железы. По некоторым данным, частота этого заболевания сегодня по сравнению с доаварийной ситуацией увеличилась в 20 раз.

В начале 50-х годов ХХ века была обнаружена возможность замедления или ослабления темпов мутирования с помощью некоторых веществ. Такие вещества назвали антимутагенами. Выделено около 200 природных и синтетических соединений, обладающих антимутагенной активностью: некоторые аминокислоты (аргинин, гистидин, метианин), витамины (токоферол, аскорбиновая кислота, ретинол, каротин), ферменты (пероксидаза, НАДФ-оксидаза, каталаза и др.), комплексные соединения растительного и животного происхождения, фармокологические средства (интерферон, оксипиридины, соли селена и др.).

Подсчитано, что с пищей человек получает в день несколько граммов веществ, способных вызвать генетические нарушения. Такие количества мутагенов должны вызывать существенные поражения в наследственных структурах человека. Но этого не происходит, т. к. антимутагены пищи нейтрализуют эффекты мутагенов. Соотношение антимутагенов и мутагенов в продуктах зависит от способа приготовления, консервирования и сроков хранения. Антимутагенами бывают не только компоненты, но и пищевые продукты в целом: экстракты различных видов капусты уменьшают уровень мутаций в 8 – 10 раз, экстракт яблок – в 8 раз, винограда – в 4 раза, баклажана – в 7, зелёного перца – в 10, а мятного листа – в 11 раз. Среди лекарственных трав отмечено антимутагенное действие зверобоя.

Вопросы для обсуждения:

1. Участок гена, кодирующий полипептид, имеет в норме следующий порядок основания: ААГСААСААТТАГТААТГААГЦААЦЦЦ. Какие изменения произойдут в белке, если во время репликации в шестом кодоне появилась вставка тимина между вторым и третьим нуклеотидами?

2. На участке гена, кодирующего полипептид последовательность нуклеотидных оснований следующая: ГААЦГАТТЦГГЦЦАГ. Произошла инверсия на участке второго – седьмого нуклеотида. Определите структуру полипептидной цепи в норме и после мутации.