Значение периодического закона по химии. Значение периодического закона


Введение

Периодический закон Д. И. Менделеева имеет исключительно большое значение. Он положил начало современной химии, сделал ее единой, целостной наукой. Элементы стали рассматриваться во взаимосвязи, в зависимости от того, какое место они занимают в периодической системе. Как указывал Н. Д. Зелинский, периодический закон явился «открытием взаимной связи всех атомов в мироздании».

Химия перестала быть описательной наукой. С открытием периодического закона в ней стало возможным научное предвидение. Появилась возможность предсказывать и описывать новые элементы и их соединения… Блестящий пример тому - предсказание Д. И. Менделеевым существования еще не открытых в его время элементов, из которых для трех - Ga, Sc и Ge - он дал точное описание их свойств.


Периодическая система и ее значение для понимания научной картины мира

Периодическая система элементов Д. И. Менделеева, естественная классификация химических элементов, являющаяся табличным (или др. графическим) выражением периодического закона Менделеева . П. с. э. разработана Д. И. Менделеевым в 1869-1871.

История П. с. э. Попытки систематизации химических элементов предпринимались различными учёными в Германии, Франции, Англии, США с 30-х годов 19 в. Предшественники Менделеева - И. Дёберейнер , Ж. Дюма , французский химик А. Шанкуртуа, англ. химики У. Одлинг, Дж. Ньюлендс и др. установили существование групп элементов, сходных по химическим свойствам, так называемых «естественных групп» (например, «триады» Дёберейнера). Однако эти учёные не шли дальше установления частных закономерностей внутри групп. В 1864 Л. Мейер на основании данных об атомных весах предложил таблицу, показывающую соотношение атомных весов для нескольких характерных групп элементов. Теоретических сообщений из своей таблицы Мейер не сделал.

Прообразом научной П. с. э. явилась таблица «Опыт системы элементов, основанной на их атомном весе и химическом сходстве», составленная Менделеевым 1 марта 1869. На протяжении последующих двух лет автор совершенствовал эту таблицу, ввёл представления о группах, рядах и периодах элементов; сделал попытку оценить ёмкость малых и больших периодов, содержащих, по его мнению, соответственно по 7 и 17 элементов. В 1870 он назвал свою систему естественной, а в 1871 - периодической. Уже тогда структура П. с. э. приобрела во многом современные очертания.

Чрезвычайно важным для эволюции П. с. э. оказалось введённое Менделеевым представление о месте элемента в системе; положение элемента определяется номерами периода и группы. Опираясь на это представление, Менделеев пришёл к выводу о необходимости изменения принятых тогда атомных весов некоторых элементов (U, In, Ce и его аналогов), в чём состояло первое практическое применение П. с. э., а также впервые предсказал существование и основные свойства нескольких неизвестных элементов, которым соответствовали незаполненные клетки П. с. э. Классическим примером является предсказание «экаалюминия» (будущего Ga, открытого П. Лекоком де Буабодраном в 1875), «экабора» (Sc, открытого шведским учёным Л. Нильсоном в 1879) и «экасилиция» (Ge, открытого немецким учёным К. Винклером в 1886). Кроме того, Менделеев предсказал существование аналогов марганца (будущие Тс и Re), теллура (Po), иода (At), цезия (Fr), бария (Ra), тантала (Pa).

П. с. э. не сразу завоевала признание как фундаментальное научное обобщение; положение существенно изменилось лишь после открытия Ga, Sc, Ge и установления двухвалентности Be (он долгое время считался трёхвалентным). Тем не менее П. с. э. во многом представляла эмпирическое обобщение фактов, поскольку был неясен физический смысл периодического закона и отсутствовало объяснение причин периодического изменения свойств элементов в зависимости от возрастания атомных весов. Поэтому вплоть до физического обоснования периодического закона и разработки теории П. с. э. многие факты не удавалось объяснить. Так, неожиданным явилось открытие в конце 19 в. инертных газов, которые, казалось, не находили места в П. с. э.; эта трудность была устранена благодаря включению в П. с. э. самостоятельной нулевой группы (впоследствии VIIIa -подгруппы). Открытие многих «радиоэлементов» в начале 20 в. привело к противоречию между необходимостью их размещения в П. с. э. и её структурой (для более чем 30 таких элементов было 7 «вакантных» мест в шестом и седьмом периодах). Это противоречие было преодолено в результате открытия изотопов . Наконец, величина атомного веса (атомной массы) как параметра, определяющего свойства элементов, постепенно утрачивала своё значение.

Одна из главных причин невозможности объяснения физического смысла периодического закона и П. с. э. состояла в отсутствии теории строения атома. Поэтому важнейшей вехой на пути развития П. с. э. явилась планетарная модель атома, предложенная Э. Резерфордом (1911). На её основе голландский учёный А. ван ден Брук высказал предположение (1913), что порядковый номер элемента в П. с. э. (атомный номер Z) численно равен заряду ядра атома (в единицах элементарного заряда). Это было экспериментально подтверждено Г. Мозли (1913-14, см. Мозли закон ). Так удалось установить, что периодичность изменения свойств элементов зависит от атомного номера, а не от атомного веса. В результате на научной основе была определена нижняя граница П. с. э. (водород как элемент с минимальным Z = 1); точно оценено число элементов между водородом и ураном; установлено, что «пробелы» в П. с. э. соответствуют неизвестным элементам с Z = 43, 61, 72, 75, 85, 87.

Оставался, однако, неясным вопрос о точном числе редкоземельных элементов, и (что особенно важно) не были вскрыты причины периодического изменения свойств элементов в зависимости от Z. Эти причины были найдены в ходе дальнейшей разработки теории П. с. э. на основе квантовых представлений о строении атома (см. далее). Физическое обоснование периодического закона и открытие явления изотонии позволили научно определить понятие «атомная масса» («атомный вес»). Прилагаемая периодическая система содержит современные значения атомных масс элементов по углеродной шкале в соответствии с Международной таблицей 1973. В квадратных скобках приведены массовые числа наиболее долгоживущих изотопов радиоактивных элементов. Вместо массовых чисел наиболее устойчивых изотопов 99 Tc, 226 Ra, 231 Pa и 237 Np указаны атомные массы этих изотопов, принятые (1969) Международной комиссией по атомным весам.

Структура П. с. э. Современная (1975) П. с. э. охватывает 106 химических элементов; из них все трансурановые (Z = 93-106), а также элементы с Z = 43 (Tc), 61 (Pm), 85 (At) и 87 (Fr) получены искусственно. За всю историю П. с. э. было предложено большое количество (нескольких сотен) вариантов её графического изображения, преимущественно в виде таблиц; известны изображения и в виде различных геометрических фигур (пространственных и плоскостных), аналитических кривых (например, спирали) и т.д. Наибольшее распространение получили три формы П. с. э.: короткая, предложенная Менделеевым и получившая всеобщее признание; длинная лестничная. Длинную форму также разрабатывал Менделеев, а в усовершенствованном виде она была предложена в 1905 А. Вернером . Лестничная форма предложена английским учёным Т. Бейли (1882), датским учёным Ю. Томсеном (1895) и усовершенствована Н. Бором (1921). Каждая из трёх форм имеет достоинства и недостатки. Фундаментальным принципом построения П. с. э. является разделение всех химических элементов на группы и периоды. Каждая группа в свою очередь подразделяется на главную (а) и побочную (б) подгруппы. В каждой подгруппе содержатся элементы, обладающие сходными химическими свойствами. Элементы а - и б -подгрупп в каждой группе, как правило, обнаруживают между собой определённое химическое сходство, главным образом в высших степенях окисления, которые, как правило, соответствуют номеру группы. Периодом называется совокупность элементов, начинающаяся щелочным металлом и заканчивающаяся инертным газом (особый случай - первый период); каждый период содержит строго определённое число элементов. П. с. э. состоит из 8 групп и 7 периодов (седьмой пока не завершен).

Специфика первого периода в том, что он содержит всего 2 элемента: H и He. Место H в системе неоднозначно: поскольку он проявляет свойства, общие со щелочными металлами и с галогенами, его помещают либо в Ia -, либо (предпочтительнее) в VIIa -подгруппу. Гелий - первый представитель VIIa -подгруппы (однако долгое время Не и все инертные газы объединяли в самостоятельную нулевую группу).

Второй период (Li - Ne) содержит 8 элементов. Он начинается щелочным металлом Li, единственная степень окисления которого равна I. Затем идёт Be - металл, степень окисления II. Металлический характер следующего элемента В выражен слабо (степень окисления III). Идущий за ним C - типичный неметалл, может быть как положительно, так и отрицательно четырёхвалентным. Последующие N, O, F и Ne - неметаллы, причём только у N высшая степень окисления V соответствует номеру группы; кислород лишь в редких случаях проявляет положительную валентность, а для F известна степень окисления VI. Завершает период инертный газ Ne.

Третий период (Na - Ar) также содержит 8 элементов, характер изменения свойств которых во многом аналогичен наблюдающемуся во втором периоде. Однако Mg, в отличие от Be, более металличен, равно как и Al по сравнению с В, хотя Al присуща амфотерность. Si, Р, S, Cl, Ar - типичные неметаллы, но все они (кроме Ar) проявляют высшие степени окисления, равные номеру группы. Таким образом, в обоих периодах по мере увеличения Z наблюдается ослабление металлического и усиление неметаллического характера элементов. Менделеев называл элементы второго и третьего периодов (малых, по его терминологии) типическими. Существенно, что они принадлежат к числу наиболее распространённых в природе, а С, N и O являются наряду с H основными элементами органической материи (органогенами). Все элементы первых трёх периодов входят в подгруппы а .

По современной терминологии (см. далее), элементы этих периодов относятся к s -элементам (щелочные и щёлочноземельные металлы), составляющим Ia - и IIa -подгруппы (выделены на цветной таблице красным цветом), и р -элементам (В - Ne, At - Ar), входящим в IIIa - VIIIa -подгруппы (их символы выделены оранжевым цветом). Для элементов малых периодов с возрастанием порядковых номеров сначала наблюдается уменьшение атомных радиусов , а затем, когда число электронов в наружной оболочке атома уже значительно возрастает, их взаимное отталкивание приводит к увеличению атомных радиусов. Очередной максимум достигается в начале следующего периода на щелочном элементе. Примерно такая же закономерность характерна для ионных радиусов.

Четвёртый период (K - Kr) содержит 18 элементов (первый большой период, по Менделееву). После щелочного металла K и щёлочноземельного Ca (s-элементы) следует ряд из десяти так называемых переходных элементов (Sc - Zn), или d- элементов (символы даны синим цветом), которые входят в подгруппы б соответствующих групп П. с. э. Большинство переходных элементов (все они металлы) проявляет высшие степени окисления, равные номеру группы. Исключение - триада Fe - Co - Ni, где два последних элемента максимально положительно трёхвалентны, а железо в определённых условиях известно в степени окисления VI. Элементы, начиная с Ga и кончая Kr (р -элементы), принадлежат к подгруппам а , и характер изменения их свойств такой же, как и в соответствующих интервалах Z у элементов второго и третьего периодов. Установлено, что Kr способен образовывать химические соединения (главным образом с F), но степень окисления VIII для него неизвестна.

Пятый период (Rb - Xe) построен аналогично четвёртому; в нём также имеется вставка из 10 переходных элементов (Y - Cd), d -элементов. Специфические особенности периода: 1) в триаде Ru - Rh - Pd только рутений проявляет степень окисления VIII; 2) все элементы подгрупп а проявляют высшие степени окисления, равные номеру группы, включая и Xe; 3) у I отмечаются слабые металлические свойства. Таким образом, характер изменения свойств по мере увеличения Z у элементов четвёртого и пятого периодов более сложен, поскольку металлические свойства сохраняются в большом интервале порядковых номеров.

Шестой период (Cs - Rn) включает 32 элемента. В нём помимо 10 d -элементов (La, Hf - Hg) содержится совокупность из 14 f -элементов, лантаноидов , от Ce до Lu (символы чёрного цвета). Элементы от La до Lu химически весьма сходны. В короткой форме П. с. э. лантаноиды включаются в клетку La (поскольку их преобладающая степень окисления III) и записываются отдельной строкой внизу таблицы. Этот приём несколько неудобен, поскольку 14 элементов оказываются как бы вне таблицы. Подобного недостатка лишены длинная и лестничная формы П. с. э., хорошо отражающие специфику лантаноидов на фоне целостной структуры П. с. э. Особенности периода: 1) в триаде Os - Ir - Pt только осмий проявляет степень окисления VIII; 2) At имеет более выраженный (по сравнению с 1) металлический характер; 3) Rn, по-видимому (его химия мало изучена), должен быть наиболее реакционноспособным из инертных газов.

Седьмой период, начинающийся с Fr (Z = 87), также должен содержать 32 элемента, из которых пока известно 20 (до элемента с Z = 106). Fr и Ra - элементы соответственно Ia - и IIa -подгрупп (s-элементы), Ac - аналог элементов IIIб -подгруппы (d -элемент). Следующие 14 элементов, f -элементы (с Z от 90 до 103), составляют семейство актиноидов . В короткой форме П. с. э. они занимают клетку Ac и записываются отдельной строкой внизу таблицы, подобно лантаноидам, в отличие от которых характеризуются значительным разнообразием степеней окисления. В связи с этим в химическом отношении ряды лантаноидов и актиноидов обнаруживают заметные различия. Изучение химической природы элементов с Z = 104 и Z = 105 показало, что эти элементы являются аналогами гафния и тантала соответственно, то есть d -элементами, и должны размещаться в IVб - и Vб -подгруппах. Членами б -подгрупп должны быть и последующие элементы до Z = 112, а далее (Z = 113-118) появятся р -элементы (IIIa - VIlla -подгруппы).

Теория П. с. э. В основе теории П. с. э. лежит представление о специфических закономерностях построения электронных оболочек (слоев, уровней) и подоболочек (оболочек, подуровней) в атомах по мере роста Z. Это представление было развито Бором в 1913-21 с учётом характера изменения свойств химических элементов в П. с. э. и результатов изучения их атомных спектров. Бор выявил три существенные особенности формирования электронных конфигураций атомов: 1) заполнение электронных оболочек (кроме оболочек, отвечающих значениям главного квантового числа n = 1 и 2) происходит не монотонно до полной их ёмкости, а прерывается появлением совокупностей электронов, относящихся к оболочкам с большими значениями n ; 2) сходные типы электронных конфигураций атомов периодически повторяются; 3) границы периодов П. с. э. (за исключением первого и второго) не совпадают с границами последовательных электронных оболочек.

Значение П. с. э. П. с. э. сыграла и продолжает играть огромную роль в развитии естествознания. Она явилась важнейшим достижением атомно-молекулярного учения, позволила дать современное определение понятия «химический элемент» и уточнить понятия о простых веществах и соединениях. Закономерности, вскрытые П. с. э., оказали существенное влияние на разработку теории строения атомов, способствовали объяснению явления изотонии. С П. с. э. связана строго научная постановка проблемы прогнозирования в химии, что проявилось как в предсказании существования неизвестных элементов и их свойств, так и в предсказании новых особенностей химического поведения уже открытых элементов. П. с. э.- фундамент химии, в первую очередь неорганической; она существенно помогает решению задач синтеза веществ с заранее заданными свойствами, разработке новых материалов, в частности полупроводниковых, подбору специфических катализаторов для различных химических процессов и т.д. П. с. э.- также научная основа преподавания химии.

Вывод

Периодическая система Д. И. Менделеева стала важнейшей вехой в развитии атомно-молекулярного учения. Благодаря ей сложилось современное понятие о химическом элементе, были уточнены представления о простых веществах и соединениях.

Прогнозирующая роль периодической системы, показанная ещё самим Менделеевым, в XX веке проявилась в оценке химических свойств трансурановых элементов.

Появление периодической системы открыло новую, подлинно научную эру в истории химии и ряде смежных наук - взамен разрозненных сведений об элементах и соединениях появилась стройная система, на основе которой стало возможным обобщать, делать выводы, предвидеть.

периодический закон менделеев атом

Периодический закон позволил привести в систему и обобщить огромный объем научной информации в химии. Эту функцию закона принято называть интегративной. Особо четко она проявляется в структурировании научного и учебного материала химии. Академик А. Е. Ферсман говорил, что система объединила всю химию в рамки единой пространственной, хронологической, генетической, энергетической связи.

Интегративная роль Периодического закона проявилась и в том, что некоторые данные об элементах, якобы выпадавшие из общих закономерностей, были проверены и уточнены как самим автором, так и его последователями.

Так случилось с характеристиками бериллия. До работы Менделеева его считали трехвалентным аналогом алюминия из-за их так называемого диагонального сходства. Таким образом, во втором периоде оказывалось два трехвалентных элемента и ни одного двухвалентного. Именно на этой стадии сначала на уровне мысленных модельных построений Менделеев заподозрил ошибку в исследованиях свойств бериллия. Затем он нашел работу российского химика Авдеева, утверждавшего, что бериллий двухвалентен и имеет атомный вес 9. Работа Авдеева оставалась не замеченной ученым миром, автор рано скончался, по-видимому, получив отравление чрезвычайно ядовитыми бериллиевыми соединениями. Результаты исследования Авдеева утвердились в науке благодаря Периодическому закону.

Такие изменения и уточнения значений и атомных весов, и валентностей были сделаны Менделеевым еще для девяти элементов (In, V, Th, U, La, Ce и трех других лантаноидов). Еще у десяти элементов были исправлены только атомные веса. И все эти уточнения впоследствии были подтверждены экспериментально.

Точно так же работы Карла Карловича Клауса помогли Менделееву сформировать своеобразную VIII группу элементов, объяснив горизонтальное и вертикальное сходство в триадах элементов:

железо кобальт никель

рутений родий палладий

осьмий иридий платина

Прогностическая (предсказательная) функция Периодического закона получила самое яркое подтверждение в открытии неизвестных элементов с порядковыми номерами 21, 31 и 32. Их существование сначала было предсказано на интуитивном уровне, но с формированием системы Менделеев с высокой степенью точности смог рассчитать их свойства. Хорошо известная история открытия скандия, галлия и германия явилась триумфом менделеевского открытия. Ф. Энгельс писал: «Применив бессознательно гегелевский закон о переходе количества в качество, Менделеев совершил научный подвиг, который смело можно поставить рядом с открытием Лаверрье, вычислившего орбиту неизвестной планеты Нептун». Однако возникает желание поспорить с классиком. Во-первых, все исследования Менделеева, начиная со студенческих лет, вполне осознанно опирались на гегелевский закон. Во-вторых, Лаверрье рассчитал орбиту Нептуна по давно известным и проверенным законам Ньютона, а Д. И. Менделеев все предсказания делал на основе им же самим открытого всеобщего закона природы.

В конце жизни Менделеев с удовлетворением отмечал: «Писавши в 1871 году статью о приложении периодического закона к определению свойств еще не открытых элементов, я не думал, что доживу до оправдания этого следствия периодического закона, но действительность ответила иначе. Описаны мной были три элемента: экабор, экаалюминий и экасилиций, и не прошло и 20 лет, как я имел уже величайшую радость видеть все три открытыми... Л. де Буабодра-на, Нильсона и Винклера я, со своей стороны, считаю истинными укрепителями периодического закона. Без них он не был бы признан в такой мере, как это случилось ныне». Всего же Менделеевым были предсказаны двенадцать элементов.

С самого начала Менделеев указал, что закон описывает свойства не только самих химических элементов, но и множества их соединений, в том числе дотоле неизвестных. Для подтверждения этого достаточно привести такой пример. С 1929 г., когда академик П. Л. Капица впервые обнаружил неметаллическую проводимость германия, во всех странах мира началось развитие учения о полупроводниках. Сразу стало ясно, что элементы с такими свойствами занимают главную подгруппу IV группы. Со временем пришло понимание, что полупроводниковыми свойствами должны в большей или меньшей мере обладать соединения элементов, расположенных в периодах равно удаленно от этой группы (например, с общей формулой типа АзВ;). Это сразу сделало поиск новых практически важных полупроводников целенаправленным и предсказуемым. На таких соединениях основывается практически вся современная электроника.

Важно отметить, что предсказания в рамках Периодической системы делались и после ее всеобщего признания. В 1913г. Моз-ли обнаружил, что длина волн рентгеновских лучей, которые получены от антикатодов, сделанных из разных элементов, изменяется закономерно в зависимости от порядкового номера, условно присвоенного элементам в Периодической системе. Эксперимент подтвердил, что порядковый номер элемента имеет прямой физический смысл. Лишь позднее порядковые номера были связаны со значением положительного заряда ядра. Зато закон Мозли позволил сразу экспериментально подтвердить число элементов в периодах и вместе с тем предсказать места еще не открытых к тому времени гафния (№ 72) и рения (№ 75).

Те же исследования Мозли позволили снять серьезную «головную боль», которую доставляли Менделееву известные отступления от правильного ряда возрастающих в таблице атомных масс элементов. Их Менделеев сделал под давлением химических аналогий, отчасти на экспертном уровне, а отчасти и просто на уровне интуитивном. Например, кобальт опережал в таблице никель, а иод с меньшим атомным весом следовал за более тяжелым теллуром. В естественных науках давно известно, что один «безобразный» факт, не укладывающийся в рамки самой прекрасной теории, может погубить ее. Так и необъясненные отступления грозили Периодическому закону. Но Мозли экспериментально доказал, что порядковые номера кобальта (№ 27) и никеля (№ 28) точно соответствуют их положению в системе. Оказалось, что эти исключения лишь подтверждают общее правило.

Важное предсказание было сделано в 1883 г. Николаем Александровичем Морозовым. За участие в народовольческом движении студент-химик Морозов был приговорен к смертной казни, замененной позднее на пожизненное заключение в одиночной камере. В царских тюрьмах он провел около тридцати лет. Узник Шлиссельбургской крепости имел возможность получать некоторую научную литературу по химии. На основании анализа интервалов атомных весов между соседними группами элементов в таблице Менделеева Морозов пришел к интуитивному выводу о возможности существования между группами галогенов и щелочных металлов еще одной группы неизвестных элементов с «нулевыми свойствами». Искать их он предложил в составе воздуха. Более того, он высказал гипотезу о строении атомов и на ее основе пытался вскрыть причины периодичности в свойствах элементов.

Однако гипотезы Морозова стали доступны для обсуждения намного позднее, когда он вышел на свободу после событий 1905 г. Но к тому времени инертные газы были уже открыты и изучены.

Долгое время факт существования инертных газов и их положение в таблице Менделеева вызывали серьезные разногласия в химическом мире. Сам Менделеев какое-то время полагал, что под маркой открытого аргона может прятаться неизвестное простое вещество типа Nj. Первое рациональное предположение о месте инертных газов сделал автор их открытия Вильям Рамзай. А в 1906 г. Менделеев писал: «При установлении Периодической системы (18б9) не только не был известен аргон, но и не было повода подозревать возможность существования подобных элементов. Нынче... эти элементы по величине их атомных весов заняли точное место между галогенами и щелочными металлами».

Долгое время шел спор: выделять инертные газы в самостоятельную нулевую группу элементов или считать их главной подгруппой VIII группы. Каждая точка зрения имеет свои «за» и «против».

Исходя из положения элементов в Периодической системе, химики-теоретики во главе с Лайнусом Полингом давно сомневались в полной химической пассивности инертных газов, напрямую указывая на возможную устойчивость их фторидов и оксидов. Но только в 1962 г. американский химик Нил Бартлетт впервые осуществил в самых обычных условиях реакцию гексафторида платины с кислородом, получив гексафтороплати-нат ксенона XePtF^, а за ним и другие соединения газов, которые теперь правильнее называть благородными, а не инертными.

Свою предсказательную функцию периодический закон сохраняет и до наших дней.

Нужно отметить, что предсказания неизвестных членов любого множества могут быть двух видов. Если предсказываются свойства элемента, находящегося внутри известного ряда подобных, то такое предсказание носит название интерполяции. Естественно предположить, что эти свойства будут подчинены тем же закономерностям, что и свойства соседних элементов. Так были предсказаны свойства недостающих элементов внутри периодической таблицы. Гораздо труднее предвидеть характеристики новых членов множеств, если они находятся за пределами описанной части. Экстраполяция -- предсказание значений функции, находящихся за пределами ряда известных закономерностей, -- всегда носит менее определенный характер.

Именно эта проблема встала перед учеными, когда начались поиски элементов, стоящих за известными границами системы. В начале XX в. таблица Менделеева заканчивалась ураном (№ 92). Первые попытки получения трансурановых элементов были предприняты в 1934 г., когда Энрико Ферми и Эмилио Сегре бомбардировали уран нейтронами. Так начиналась дорога к актинои-дам и трансактиноидам.

Ядерные реакции используют и для синтеза других, неизвестных ранее элементов.

Искусственно синтезированный Еиенном Теодором Сиборгом и его сотрудниками элемент № 101 получил название «менделевий». Сам Сиборг об этом сказал так: «Особенно существенно отметить, что элемент 101 назван в честь великого русского химика Д. И. Менделеева американскими учеными, которые всегда считали его пионером в химии».

Число вновь открытых, а точнее, искусственно созданных элементов постоянно растет. Синтез наиболее тяжелых ядер элементов с порядковыми номерами 113 и 115 осуществлен в российском Объединенном институте ядерных исследований в Дубне путем бомбардировки ядер искусственно полученного америция ядрами тяжелого изотопа кальция-48. При этом возникает ядро элемента № 115, тут же распадающееся с образованием ядра элемента № 113. Подобные сверхтяжелые элементы в природе не существуют, но они возникают при взрывах сверхновых звезд, а также могли существовать в период Большого взрыва. Их исследование помогает понять, как возникла наша Вселенная.

Всего в природе встречается 39 естественных радиоактивных изотопов. Различные изотопы распадаются с разной скоростью, которую характеризует период полураспада. Период полураспада урана-238 составляет 4,5 млрд. лет, а для некоторых других элементов он может быть равен миллионным долям секунды.

Радиоактивные элементы, последовательно распадаясь, превращаясь друг в друга, составляют целые ряды. Известны три таких ряда: по начальному элементу все члены рядов объединяются в семейства урана, актиноурана и тория. Еще одно семейство составляют искусственно полученные радиоактивные изотопы. Во всех семействах превращения завершаются возникновением нерадиоактивных атомов свинца.

Поскольку в земной коре могут находиться только изотопы, период полураспада которых соизмерим с возрастом Земли, то можно предположить, что на протяжении миллиардов лет ее истории существовали и такие короткоживущие изотопы, которые к настоящему времени в прямом смысле этого слова вымерли. К таким, вероятно, относился и тяжелый изотоп калия-40. В результате его полного распада табличное значение атомной массы калия сегодня составляет 39,102, поэтому он уступает по массе элементу № 18 аргону (39,948). Так объясняются исключения в последовательном увеличении атомных масс элементов в периодической таблице.

Академик В. И. Гольданский в речи, посвященной памяти Менделеева, отмечал «фундаментальную роль, которую труды Менделеева играют даже в совершенно новых областях химии, зародившихся через десятилетия после смерти гениального творца Периодической системы».

Наука есть история и хранилище мудрости и опыта веков, их разумного созерцания и испытанного суждения.

Д. И. Менделеев

Редко бывает, чтобы научное открытие оказалось чем-то совершенно неожиданным, почти всегда оно предчувствуется:

однако последующим поколениям, которые пользуются апробированными ответами на все вопросы, часто нелегко оценить, каких трудностей это стоило их предшественникам.

Ч. Дарвин

Каждая из наук об окружающем нас мире имеет предметом изучения конкретные формы движения материи. Сложившиеся представления рассматривают эти формы движения в порядке повышения их сложности:

механическая -- физическая - химическая -- биологическая -- социальная. Каждая из последующих форм не отвергает предыдущие, но включает их в себя.

Совсем не случайно на праздновании столетия со дня открытия Периодического закона Г. Т. Сиборг посвятил свой доклад новейшим достижениям химии. В нем он высоко оценил удивительные заслуги российского ученого: «При рассмотрении эволюции Периодической системы со времен Менделеева наиболее сильное впечатление производит то, что он был в состоянии создать Периодическую систему элементов, хотя Менделееву не были известны такие общепринятые теперь понятия, как ядерная структура и изотопы, связь порядковых номеров с валентностью, электронная природа атомов, периодичность химических свойств, объясняемая электронной структурой, и, наконец, радиоактивность».

Можно привести слова академика А. Е. Ферсмана, обратившего внимание на будущее: «Будут появляться и умирать новые теории, блестящие обобщения. Новые представления будут сменять наши уже устаревшие понятия об атоме и электроне. Величайшие открытия и эксперименты будут сводить на нет прошлое и открывать на сегодня невероятные по новизне и широте горизонты -- все это будет приходить и уходить, но Периодический закон Менделеева будет всегда жить и руководить исканиями».

    Предпосылкой открытия Периодического закона послужили решения международного съезда химиков в городе Карлсруэ в 1860 году, когда окончательно утвердилось атомно - молекулярное учение были предприняты первые единые определения понятий молекулы и атома, а также атомного веса, который мы теперь называем относительной атомной массой.

    Д. И. Менделеев в своём открытии опирался на чётко сформулированные исходные положения:

    Общее неизменное свойство атомов всех химических элементов - их атомная масса;

    Свойства элементов зависят от их атомных масс;

    Форма этой зависимости - периодическая.

    Рассмотренные выше предпосылки можно назвать объективными, то есть не зависящими от личности ученого, так как они были обусловлены историческим развитием химии как науки.

    III Периодический закон и Периодическая система химических элементов.

    Открытие Менделеевым Периодического закона.

    Первый вариант Периодической таблицы элементов был опубликован Д. И. Менделеевым в 1869 году - задолго до того, как было изучено строение атома. В это время Менделеев преподавал химию в Петербургском университете. Готовясь к лекциям, собирая материал для своего учебника "Основы химии", Д. И. Менделеев раздумывал над тем, как систематизировать материал таким образом, чтобы сведения о химических свойствах элементов не выглядели набором разрозненных фактов.

    Ориентиром в этой работе Д. И. Менделееву послужили атомные массы (атомные веса) элементов. После Всемирного конгресса химиков в 1860 году, в работе которого участвовал и Д. И. Менделеев, проблема правильного определения атомных весов была постоянно в центре внимания многих ведущих химиков мира, в том числе и Д. И. Менделеева. Располагая элементы в порядке возрастания их атомных весов, Д. И. Менделеев обнаружил фундаментальный закон природы, который теперь известен как Периодический закон:

    Свойства элементов периодически изменяются в соответствии с их атомным весом.

    Приведенная формулировка нисколько не противоречит современной, в которой понятие "атомный вес" заменено понятием "заряд ядра". Ядро состоит из протонов и нейтронов. Число протонов и нейтронов в ядрах большинства элементов примерно одинаково, поэтому атомный вес увеличивается примерно так же, как увеличивается число протонов в ядре (заряд ядра Z).

    Принципиальная новизна Периодического закона заключалась в следующем:

    1. Устанавливалась связь между НЕСХОДНЫМИ по своим свойствам элементами. Эта связь заключается в том, что свойства элементов плавно и примерно одинаково изменяются с возрастанием их атомного веса, а затем эти изменения ПЕРИОДИЧЕСКИ ПОВТОРЯЮТСЯ.

    2. В тех случаях, когда создавалось впечатление, что в последовательности изменения свойств элементов не хватает какого-нибудь звена, в Периодической таблице предусматривались ПРОБЕЛЫ, которые надо было заполнить еще не открытыми элементами.

    Во всех предыдущих попытках определить взаимосвязь между элементами другие исследователи стремились создать законченную картину, в которой не было места еще не открытым элементам. Наоборот, Д. И. Менделеев считал важнейшей частью своей Периодической таблицы те ее клеточки, которые оставались пока пустыми. Это давало возможность предсказать существование еще неизвестных элементов.

    Достойно восхищения, что свое открытие Д. И. Менделеев сделал в то время, когда атомные веса многих элементов были определены весьма приблизительно, а самих элементов было известно всего 63 - то есть чуть больше половины известных нам сегодня.

    Глубокое знание химических свойств различных элементов позволило Менделееву не только указать на еще не открытые элементы, но и точно предсказать их свойства! Д. И. Менделеев точно предсказал свойства элемента, названного им "эка-силицием". Спустя 16 лет этот элемент действительно был открыт немецким химиком Винклером и назван германием.

    Сопоставление свойств, предсказанных Д. И. Менделеевым для еще не открытого элемента "эка-силиция" со свойствами элемента германия (Ge). В современной Периодической таблице германий занимает место "эка-силиция".

    Свойство

    Предсказано Д. И. Менделеевым для "эка-силиция" в 1870 году

    Определено для германия Ge, открытого в 1886 году

    Цвет, внешний вид

    коричневый

    светло-коричневый

    Атомный вес

    72,59

    Плотность (г/см3)

    5,5

    5,35

    Формула оксида

    ХО2

    GeO2

    Формула хлорида

    XCl4

    GeCl4

    Плотность хлорида (г/см3)

    1,9

    1,84

    Точно так же блестяще подтвердились предсказанные Д. И. Менделеевым свойства "эка-алюминия" (элемент галлий Ga, открыт в 1875 году) и "эка-бора" (открытый в 1879 году элемент скандий Sc).

    После этого ученым всего мира стало ясно, что Периодическая таблица Д. И. Менделеева не просто систематизирует элементы, а является графическим выражением фундаментального закона природы - Периодического закона.

    Структура Периодической системы.

    На основе Периодического закона Д.И. Менделеев создал Периодическую систему химических элементов, которая состояла из 7 периодов и 8 групп (короткопериодный вариант таблицы). В настоящее время чаще используется длиннопериодный вариант Периодической системы (7 периодов, 8 групп, отдельно показаны элементы - лантаноиды и актиноиды).

    Периоды - это горизонтальные ряды таблицы, они подразделяются на малые и большие. В малых периодах находится 2 элемента (1-й период) или 8 элементов (2-й, 3-й периоды), в больших периодах - 18 элементов (4-й, 5-й периоды) или 32 элемента (6-й, 7-й период). Каждый период начинается с типичного металла, а заканчивается неметаллом (галогеном) и благородным газом.

    Группы - это вертикальные последовательности элементов, они нумеруется римской цифрой от I до VIII и русскими буквами А и Б. Короткопериодный вариант Периодической системы включал подгруппы элементов (главную и побочную).

    Подгруппа - это совокупность элементов, являющихся безусловными химическими аналогами; часто элементы подгруппы обладают высшей степенью окисления, отвечающей номеру группы.

    В А-группах химические свойства элементов могут меняться в широком диапазоне от неметаллических к металлическим (например, в главной подгруппе V группы азот - неметалл, а висмут - металл).

    В Периодической системе типичные металлы расположены в IА группе (Li-Fr), IIА (Mg-Ra) и IIIА (In, Tl). Неметаллы расположены в группах VIIА (F-Al), VIА (O-Te), VА (N-As), IVА (C, Si) и IIIА (B). Некоторые элементы А-групп (бериллий Ве, алюминий Al, германий Ge, сурьма Sb, полоний Po и другие), а также многие элементы Б-групп проявляют и металлические, и неметаллические свойства (явление амфотерности).

    Для некоторых групп применяют групповые названия: IА (Li-Fr) - щелочные металлы, IIА (Ca-Ra) - щелочноземельные металлы, VIА (O-Po) - халькогены, VIIА (F-At) - галогены, VIIIА (He-Rn) - благородные газы. Форма Периодической системы, которую предложил Д.И. Менделеева, называлась короткопериодной или классической. В настоящее время больше используется другая форма Периодической системы - длиннопериодная.

    Периодический закон Д.И. Менделеева и Периодическая система химических элементов стали основой современной химии. Относительные атомные массы приведены по Международной таблице 1983 года. Для элементов 104-108 в квадратных скобках приведены массовые числа наиболее долгоживущих изотопов. Названия и символы элементов, приведенные в круглых скобках, не являются общепринятыми.

    IV Периодический закон и строение атома.

    Основные сведения строения атомов.

    В конце XIX - начале XX века физики доказали, что атом является сложной частицей и состоит из более простых (элементарных) частиц. Были обнаружены:

    катодные лучи (английский физик Дж. Дж. Томсон, 1897 г.), частицы которых получили название электроны e− (несут единичный отрицательный заряд);

    естественная радиоактивность элементов (французские ученые - радиохимики А. Беккерель и М. Склодовская-Кюри, физик Пьер Кюри, 1896 г.) и существование α-частиц (ядер гелия 4He2+);

    наличие в центре атома положительно заряженного ядра (английский физик и радиохимик Э. Резерфорд, 1911 г.);

    искусственное превращение одного элемента в другой, например азота в кислород (Э. Резерфорд, 1919 г.). Из ядра атома одного элемента (азота - в опыте Резерфорда) при соударении с α-частицей образовывалось ядро атома другого элемента (кислорода) и новая частица, несущая единичный положительный заряд и названная протоном (p+, ядро 1H)

    наличие в ядре атома электронейтральных частиц - нейтронов n0 (английский физик Дж. Чедвик, 1932 г.).

    В результате проведенных исследований было установлено, что в атоме каждого элемента (кроме 1H) присутствуют протоны, нейтроны и электроны, причем протоны и нейтроны сосредоточены в ядре атома, а электроны - на его периферии (в электронной оболочке).

    Число протонов в ядре равно числу электронов в оболочке атома и отвечает порядковому номеру этого элемента в Периодической системе.

    Электронная оболочка атома представляет собой сложную систему. Она делится на подоболочки с разной энергией (энергетические уровни); уровни, в свою очередь, подразделяются на подуровни, а подуровни включают атомные орбитали, которые могут различаться формой и размерами (обозначаются буквами s, p, d, f и др.).

    Итак, главной характеристикой атома является не атомная масса, а величина положительного заряда ядра. Это более общая и точная характеристика атома, а значит, и элемента. От величины положительного заряда ядра атома зависят все свойства элемента и его положение в периодической системе. Таким образом, порядковый номер химического элемента численно совпадает с зарядом ядра его атома. Периодическая система элементов является графическим изображением периодического закона и отражает строение атомов элементов.

    Теория строения атома объясняет периодическое изменение свойств элементов. Возрастание положительного заряда атомных ядер от 1 до 110 приводит к периодическому повторению у атомов элементов строения внешнего энергетического уровня. А поскольку от числа электронов на внешнем уровне в основном зависят свойства элементов, то и они периодически повторяются. В этом физический смысл периодического закона.

    Каждый период в периодической системе начинается элементами, атомы которых на внешнем уровне имеют один s-электрон (незавершенные внешние уровни) и потому проявляют сходные свойства - легко отдают валентные электроны, что обуславливает их металлический характер. Это щелочные металлы - Li, Na, К, Rb, Cs.

    Заканчивается период элементами, атомы которых на внешнем уровне содержат 2(s2) электрона (в первом периоде) или 8 (s2p6) электронов (во всех последующих), то есть имеют завершенный внешний уровень. Это благородные газы Не, Ne, Аr, Кr, Хе, имеющие инертные свойства.

Научное значение периодического закона. Жизнь и деятельность Д.И.Менделеева

Открытие периодического закона и создание Периодической системы химических элементов - величайшее достижение науки 19 века. Экспериментальное подтверждение измененных Д. И. Менделеевым относительных атомных масс, открытие элементов с предусмотренными им свойствами, расположение открытых инертных газов в периодической системе привели к всеобщему признанию периодического закона.

Открытие периодического закона обусловило дальнейшее бурное развитие химии: за следующие тридцать лет было открыто 20 новых химических элементов. Периодический закон способствовал дальнейшему развитию работ по изучению строения атома, в результате которых была установлена взаимосвязь строения атома с периодической сменой их свойств. Опираясь на периодический закон, ученые смогли добывать вещества с заданными свойствами, синтезировать новые химические элементы. Периодический закон позволил ученым построить гипотезы об эволюции химических элементов во Вселенной.

Периодический закон Д. И. Менделеева имеет общенаучное значение и является фундаментальным законом природы.

Дмитрий Иванович Менделеев родился в 1834 г. в г. Тобольске. После окончания Тобольской гимназии он учился в Петербургском педагогическом институте, который окончил с золотой медалью. Будучи студентом Д. И. Менделеев начал заниматься научными исследованиями. После учебы два года провел за границей в лаборатории известного химика Роберта Бунзена. В 1863 году был избран профессором сначала Петербургского технологического института, а впоследствии и Петербургского университета.

Менделеев проводил исследования в области химической природы растворов, состояния газов, теплоты сгорания топлива. Он интересовался различными проблемами сельского хозяйства, горнорудной делом, вопросами металлургии, работал над проблемой подземной газификации топлива, изучал нефтяное дело. Самым весомым результатом творческой деятельности, принесла Д. И. Менделееву всемирную славу, было открытие в 1869 году Периодического закона и Периодической системы химических элементов. Он написал около 500 статей по химии, физики, техники, экономики, геодезии. Организовал и был директором первой российской палаты мер и весов, заключил начало современной метрологии. Изобрел общее уравнение состояния идеального газа, обобщил уравнение Клапейрона (уравнение Клапейрона-Менделеева).

Менделеев прожил 73 года. За свои достижения был избран членом 90 иностранных академий наук и почетным доктором многих университетов. В его честь назван 101-й химический элемент (Менделевий).

Колыванский сельскохозяйственный техникум
Агрономический факультет

Кафедра химии

Реферат:
Значение периодического закона Д.И.Менделеев.

Выполнила: студентка I курса
А-11 группы Калинкина В.В.
Проверил: преподаватель
Могилина В.А.

Колывань 2010
Содержание
Введение………………………………………………………… …………….3
Краткая биография и деятельность Д.И. Менделеева ……………………...4
История открытия Периодического закона………………………………….5
Значение Периодического закона для химии и естествознания……………6
Заключение…………………………………………………… ……………….9
Список использованной литературы………………………………………..10

Введение


Сами трудясь, вы сделаете все
и для близких, и для себя,
а если при труде успеха не будет,
будет неудача – не беда, пробуйте еще.
Д.И.Менделеев

Цель: узнать о значении периодического закона.
Задачи : 1) изучить историю периодического закона; 2) узнать о роли периодического закона в химии и естествознании; 3) сделать выводы.
Актуальность темы : эта тема очень интересна и привлекательна так как открытие в 1869 г. Периодического закона стало не только одним из крупнейших событий в истории химии XIX столетия, но и в известном смысле одним из самых выдающихся достижений человеческой мысли минувшего тысячелетия.
Периодический закон и Периодическая система химических элементов до сих пор все еще остаются загадкой. До сих пор не удается понять глубокие физические причины периодичности, в частности, причины периодической повторяемости сходных электронных конфигураций атомов, хотя ясно, что феномен этот связан с непространственной динамической симметрией атомных систем.
Наконец, остается во многих отношениях загадочной сама история открытия Периодического закона и создания Периодической системы, хотя ей была посвящена обширная литература. Разными исследователями предлагались различные версии истории открытия Периодического закона.

Краткая биография и деятельность Д.И. Менделеева
Менделеев Дмитрий Иванович (1834-1907) - выдающийся русский химик, автор Периодического закона родился в г. Тобольске, там же он закончил гимназию, а в 1850 г. был принят в Петербургский главный педагогический институт на физико-математический факультет. После защиты диссертации Менделеев в 1857 г. был назначен приват-доцентом. В 1859 г. он уехал заграничную командировку в Германию на два года, где работал в Гейдельберге у Бунзена, принял участие в работе Международного химического конгресса в Карлсруэ. После возвращения в Петербург Менделеев вел большую научную и преподавательскую деятельность, в 1865 г. защитил докторскую диссертацию, в которой была изложена его гидратная теория растворов и выдвинута идея о возможности существования в растворах соединений переменного состава.
В 1867 г. Менделеев был назначен профессором химии Петербургского университета. Заняв кафедру химии столичного университета, он стал главой университетских химиков в России и инициатором создания Русского химического общества (1868 г.). В 1868 г. Менделеев начал работать над учебником "Основы химии". Он писал, что его цель - "познакомить учащихся с основными данными и выводами химии в общедоступном научном изложении, указать на значение этих выводов для понимания как природы вещества и явлений вокруг нас совершающихся, так и тех применений, которые получила химия в сельском хозяйстве, технике". В процессе работы над второй частью учебника в феврале 1869 г. Менделеев сформулировал Периодический закон и предложил наиболее совершенную форму его воплощения в виде таблицы, которую он назвал "Опыт системы элементов, основанной на их атомном весе и химическом сходстве". В течение двух лет Менделеев работал над развитием и углублением открытого закона и готовил обобщающую статью "Естественная система элементов и применение ее к указанию свойств неоткрытых элементов". Менделеев предсказал существование:

    экаалюминия (был открыт в 1875 г. французом Лекоком де Буабодраном и назван галлием),
    экабора (был открыт в 1879 г. шведом Л.Ф.Нильсоном и назван скандием)
    экасилиция (был открыт в 1886 г. немцем К.А.Винклером и назван германием).
К середине 80-х годов XIX в. Периодический закон был признан всеми учеными и вошел в арсенал науки как один из важнейших законов природы.
Изучая газы, Менделеев (в 1874 г.) уточнил уравнение состояния для идеальных газов (уравнение Клапейрона-Менделеева).

В 1877 г. Менделеев высказал гипотезу о происхождении нефти из карбидов тяжелых металлов и предложил принцип дробной перегонки при переработке нефти, в 1888 г. - выдвинул идею о подземной газификации углей, в 1891 г. - разработал технологию изготовления нового типа бездымного пороха.
История открытия Периодического закона
Первый вариант Периодической таблицы элементов был опубликован Дмитрием Ивановичем Менделеевым в 1869 году - задолго до того, как было изучено строение атома. В это время Менделеев преподавал химию в Петербургском университете. Готовясь к лекциям, собирая материал для своего учебника "Основы химии", Д. И. Менделеев раздумывал над тем, как систематизировать материал таким образом, чтобы сведения о химических свойствах элементов не выглядели набором разрозненных фактов.
Ориентиром в этой работе Д. И. Менделееву послужили атомные массы (атомные веса) элементов. После Всемирного конгресса химиков в 1860 году, в работе которого участвовал и Д. И. Менделеев, проблема правильного определения атомных весов была постоянно в центре внимания многих ведущих химиков мира, в том числе и Д. И. Менделеева.
Располагая элементы в порядке возрастания их атомных весов, Д. И. Менделеев обнаружил фундаментальный закон природы, который теперь известен как Периодический закон:
Свойства элементов периодически изменяются в соответствии с их атомным весом.
Приведенная формулировка нисколько не противоречит современной, в которой понятие "атомный вес" заменено понятием "заряд ядра". Сегодня мы знаем, что атомная масса сосредоточена в основном в ядре атома. Ядро состоит из протонов и нейтронов. С увеличением числа протонов, определяющих заряд ядра, растет и число нейтронов в ядрах, а значит и масса атомов элементов.
До Менделеева было предпринято несколько попыток систематизировать элементы по разным признакам. В основном объединялись сходные по своим химическим свойствам элементы. Например: Li, Na, K. Или: Cl, Br, I. Эти и некоторые другие элементы объединялись в так называемые "триады". Таблица из пяти таких "триад" была опубликована Доберейнером еще в 1829 году, но она включала лишь небольшую часть из известных к тому времени элементов.
В 1864 году англичанин Дж. Ньюлендс заметил, что если располагать элементы в порядке возрастания их атомного веса, то примерно каждый восьмой элемент является своего рода повторением первого - подобно тому, как нота "до" (как и любая другая нота) повторяется в музыкальных октавах через каждые 7 нот (закон октав). Ниже показан вариант таблицы Ньюлендса стр.11 , относящийся к 1865 году. Элементы, имеющие одинаковый атомный вес (по данным того времени) помещались под одним номером. Можно видеть, с какими трудностями столкнулся Ньюлендс - наметившиеся закономерности быстро разрушались, поскольку в его системе не была учтена возможность существования еще не открытых элементов.
Доклад Ньюлендса «Закон октав и причины химических соотношений среди атомных весов» обсуждался на заседании Лондонского химического общества 1 марта 1866 года, а краткий отчет о нем публиковался в журнале «Сhemical News». Ньюлендс был близок к открытию Периодического закона, однако сама идея последовательной нумерации только известных к тому времени элементов не просто "ломала" плавное изменение их химических свойств - эта идея исключала возможность существования еще не открытых элементов, для которых в системе Ньюлендса просто не было места.

Значение Периодического закона для химии и естествознания
Принципиальная новизна Периодического закона, открытого и сформулированного Д. И. Менделеевым спустя ровно три года, заключалась в следующем:
1. Устанавливалась связь между НЕСХОДНЫМИ по своим свойствам элементами. Эта связь заключается в том, что свойства элементов плавно и примерно одинаково изменяются с возрастанием их атомного веса, а затем эти изменения ПЕРИОДИЧЕСКИ ПОВТОРЯЮТСЯ.
2. В тех случаях, когда создавалось впечатление, что в последовательности изменения свойств элементов не хватает какого-нибудь звена, в Периодической таблице предусматривались ПРОБЕЛЫ, которые надо было заполнить еще не открытыми элементами. Мало того, Периодический закон позволял ПРЕДСКАЗЫВАТЬ свойства этих элементов.
Первый вариант Периодической таблицы, опубликованный Менделеевым в 1869 году, выглядит непривычно для современного читателя (рис. 2 стр. 11). Пока не проставлены атомные номера, будущие группы элементов расположены горизонтально (а будущие периоды - вертикально), еще не открыты инертные газы, встречаются незнакомые символы элементов, многие атомные массы заметно отличаются от современных. Однако нам важно видеть, что уже в первый вариант Периодической таблицы Д. И. Менделеев включал больше элементов, чем их было открыто на тот момент! Он оставил свободными 4 клеточки своей таблицы для еще неизвестных элементов и даже смог правильно оценить их атомный вес. Атомные единицы массы (а.е.м.) тогда еще не были приняты и атомные веса элементов измеряли в "паях", близких по значению к массе атома водорода.
Предсказанные Д. И. Менделеевым и действительно открытые впоследствии элементы.
Во всех предыдущих попытках определить взаимосвязь между элементами другие исследователи стремились создать законченную картину, в которой не было места еще не открытым элементам. Наоборот, Д. И. Менделеев считал важнейшей частью своей Периодической таблицы те ее клеточки, которые оставались пока пустыми (знаки вопроса на рис. 2 стр.11.). Это давало возможность предсказать существование еще неизвестных элементов.
Достойно восхищения, что свое открытие Д. И. Менделеев сделал в то время, когда атомные веса многих элементов были определены весьма приблизительно, а самих элементов было известно всего 63 - то есть чуть больше половины известных нам сегодня.
Глубокое знание химических свойств различных элементов позволило Менделееву не только указать на еще не открытые элементы, но и предсказать их свойства! Посмотрите, как точно предсказал Д. И. Менделеев свойства элемента, названного им "эка-силицием" (на рис. 2 стр. 11 это элемент германий). Спустя 16 лет предсказание Д. И. Менделеева блестяще подтвердилось.
и т.д.................