Пероксисомы клетки. Клеточные включения


К ним относятся белковые, жировые и полисахаридные включения.

Белковые включения . В клетке есть соединения, важность которых определяется тем, что в случае нужды они могут стать предшественниками целого ряда других, жизненно необходимых, для клетки веществ. К таким соединениям относятся аминокислоты. Они могут использоваться в клетке в качестве источников энергии для синтеза углеводов, жиров, гормонов и других метаболитов. Поэтому белковые включения фактически представляют собой своеобразное клеточное сырьё для производства аминокислот.

Судьба белковых включений во всех клетках примерно одинакова. Прежде всего они сливаются с лизосомой, где специальные ферменты расщепляют белки до аминокислот. Последние выходят из лизосом в цитоплазму. Часть из них в цитоплазме взаимодействует с тРНК и в таком виде транспортируется к рибосомам на синтез белка. Другая часть вступает в специальные биохимические циклы, где из них синтезируются жиры, углеводы, гормоны и другие метаболиты. И наконец, аминокислоты принимают участие в энергетическом обмене клетки.

Полисахаридные включения . Для животных клеток и клеток грибов - основным запасным питательным включением является гликоген. Для растений таким включением является крахмал.

Гликоген у человека в основном депонируется в клетках печени и используется не только для нужд самой клетки, но и в качестве энергетических ресурсов для всего организма. В последнем случае гликоген расщепляется в клетке до глюкозы, которая выходит из клетки в кровь и разносится по организму.

Гликоген – это большая ветвистая молекула, состоящая из глюкозных остатков. Специальные внутриклеточные процессы при необходимости отщепляют от молекулы гликогена глюкозные остатки и синтезируют глюкозу. Последняя поступает в кровь и расходуется на нужды клетки. Казалось бы, проще запасти в клетке саму глюкозу, не превращая её в гликоген, тем более что молекула глюкозы растворима и достаточно быстро проходит в клетку через плазматическую мембрану. Однако этому мешает то, что глюкоза также быстро, не задерживаясь, выходит из клетки. Задержать её в клетке в чистом виде практически невозможно. Кроме того, депонирование глюкозы в больших количествах опасно, т.к. это может привести к созданию такого градиента концентраций, что вначале произойдёт набухание клетки из-за поступления воды, а затем и её гибель. Поэтому специальная система ферментов, слегка видоизменив молекулу глюкозы, связывает её с такой же молекулой. Создаётся гигантская ветвистая молекула, состоящая из глюкозных остатков – гликоген. Эта молекула уже нерастворима, как глюкоза, и не способна изменить осмотические свойства клетки.

Жировые включения . Эти включения в гиалоплазме могут находиться в виде капель. Многие растения содержат масла, например подсолнечник, арахис и т.д. Богата жировыми включениями жировая ткань человека, служащая для предохранения организма от потерь тепла, энергетическим депо и как амортизатор при механических воздействиях.

Необходимо отметить, что запасов гликогена в организме среднего взрослого человека достаточно на один день нормальной активности, тогда как запаса жиров хватит на месяц. Если бы главным энергетическим резервом в нашем организме был гликоген, а не жиры, вес тела увеличился бы в среднем на 25 кг.

В некоторых случаях появление жировых включений в клетке является тревожным сигналом неблагополучия. Так, при заболевании дифтерией токсин микроорганизма блокирует утилизацию жирных кислот и они накапливаются в больших количествах в цитоплазме. При этом нарушается метаболизм и клетка гибнет. Чаще всего такие нарушения происходят в клетках сердечной мышцы. Заболевание называется дифтерийный миокардит.

Все питательные включения используются клеткой в моменты интенсивной жизнедеятельности. В эмбриогенезе существует потребность в большом количестве питательных веществ. Поэтому ещё на стадии овогенеза яйцеклетка интенсивно запасает различные питательные вещества (желток и др.) в виде включений, которые обеспечивают прохождение первых этапов эмбрионального развития.

б. Секреторные включения

Различные секреторные гранулы, образующиеся в железистых клетках животных, разнообразны по химической природе и могут быть представлены ионами, ферментами, гормонами, гликопротеинами и т.д., например, пищеварительные ферменты, синтезируемые клетками поджелудочной железы. Сигналом к формированию и опорожнению секреторных включений в поджелудочной железе является приём пищи. До приёма пищи происходит накопление включений в цитоплазме. Определяя количество включений в клетках поджелудочной железы, можно примерно предположить, чьи это клетки – голодного или сытого человека.

Включения цитоплазмы

Включения цитоплазмы - это необязательные компоненты клетки, появляющиеся и исчезающие в зависимости от интенсивности и характера обмена веществ в клетке и от условий существования организма. Включения имеют вид зерен, глыбок, капель, вакуолей, гранул различной величины и формы. Их химическая природа очень разнообразна. В зависимости от функционального назначения включения объединяют в группы:

  • трофические;
  • инкреты;
  • экскреты и др.
  • специальные включения (гемоглобин)

Среди трофических включений (запасных питательных веществ) важную роль играют жиры и углеводы. Белки как трофические включения используются лишь в редких случаях (в яйцеклетках в виде желточных зерен).

Пигментные включения придают клеткам и тканям определенную окраску.

Секреты и инкреты накапливаются в железистых клетках, так как являются специфическими продуктами их функциональной активности.

Экскреты - конечные продукты жизнедеятельности клетки, подлежащие удалению из нее.

См. также

Литература

  • Вракин В.Ф., Сидорова М.В. Морфология сельскохозяйственных животных. - Москва: Агропромиздат, 1991. - 528 с. - 23 000 экз. - ISBN 5-10-000675-7

Wikimedia Foundation . 2010 .

Смотреть что такое "Включения цитоплазмы" в других словарях:

    Компоненты цитоплазмы, представляющие собой отложения веществ, временно выведенных из обмена или конечных его продуктов. Специфика В. к. связана со специализацией соответств. клеток, тканей и органов. Наиб, распространены трофич. В. к. капли жира … Биологический энциклопедический словарь

    - (биол.) все структуры цитоплазмы клетки. Обычно В. к. подразделяют на 3 группы: постоянные, или органоиды, осуществляющие общие функции клетки (например, Митохондрии, Гольджи комплекс, Хлоропласты); временные, или параплазматические,… …

    - (К. G. P. Dohle, 1855 1928, нем. патолог) мелкие круглые или неправильной формы включения в нейтрофильных гранулоцитах, занимающие большую часть цитоплазмы; наблюдаются при некоторых инфекционных болезнях … Большой медицинский словарь

    Элементарная живая система, способная к самостоятельному существованию, самовоспроизведению и развитию; основа строения и жизнедеятельности всех животных и растений. К. существуют и как самостоятельные организмы (см. Простейшие), и в… … Большая советская энциклопедия

    I Клетка (cytus) основная структурно функциональная единица, определяющая строение, жизнедеятельность, развитие и размножение животных и растительных организмов за исключением вирусов; элементарная живая система, способная к обмену веществ с… … Медицинская энциклопедия

    Еще более обширную по числу видов группу морских саркодовых, чем фораминиферы, образуют лучевики, или радиолярии (Radiolaria). Это отдельный подкласс в классе саркодовых, насчитывающий не менее 7 8 тыс. видов. Кроме современных… … Биологическая энциклопедия

    Содержание статьи: Определение и история теории П. Физические и морфологические свойства П. Тончайшее строение П. и главнейшие теории. Химические свойства П. Физиологические свойства П.: движение, раздражимость, формирующая деятельность,… … Энциклопедический словарь Ф.А. Брокгауза и И.А. Ефрона

    У этого термина существуют и другие значения, см. Клетка (значения). Клетки крови человека (РЭМ) … Википедия

    Начиная знакомство с животным миром, необходимо сначала в самых общих чертах остановиться на строении и отправлениях клетки. Клетка представляет собой структурную и функциональную единицу, лежащую в основе строения и развития… … Биологическая энциклопедия

>> Клеточные включения

Клеточные включения

Клеточный центр расположен в цитоплазме всех клеток вблизи от ядра. Он играет важнейшую роль в формировании внутреннего скелета клетки - цитоскелета. Из области клеточного центра расходятся многочисленные микротрубочки, поддерживающие форму клетки и играющие роль своеобразных рельсов для движения органоидов по цитоплазме. У животных и низших растений клеточный центр образован двумя центриолями. Каждая центриоль - это цилиндрик длиной около 0,3 мкм и диаметром 0,1 мкм, образованный тончайшими микротрубочками. Микротрубочки расположены по окружности центриолей по три (триплетами), а еще две микротрубочки лежат по оси каждой из двух центриолей. Центриоли расположены в цитоплазме под прямым углом друг к другу. Очень велика роль клеточного центра при делении клеток, когда центриоли расходятся к полюсам делящейся клетки и образуют веретено деления. У высших растений клеточный центр устроен по-другому и центриолей не имеет.

Органоиды движения.

Многие клетки способны к движению, например инфузория туфелька, эвглена зеленая, амебы. Некоторые из этих организмов двигаются при помощи особых органоидов движения - ресничек и жгутиков.

Жгутики имеют относительно большую длину, например у сперматозоидов млекопитающих она достигает 100 мкм. Реснички гораздо короче - около 10-15 мкм. Однако внутреннее строение ресничек и жгутиков одинаково: они образованы такими же микротрубочками, как цептриоли клеточного центра. Движение жгутиков и ресничек вызвано скольжением микротрубочек друг относительно друга, в результате чего эти органоиды изгибаются. В основании каждой реснички или жгутика лежит базальное тельце, которое укрепляет их в цитоплазме клетки. На работу жгутиков и ресничек расходуется энергия АТФ .

Органоиды движения часто встречаются и у клеток многоклеточных организмов. Например, эпителий бронхов человека покрыт множеством (около 10э на 1 см2) ресничек. Все реснички каждой эпителиальной клетки двигаются строго согласованно, образуя своеобразные волны, хорошо заметные под микроскопом. Такие «мерцательные» движения ресничек помогают очистке бронхов от инородных частиц, пыли. Жгутики есть у таких специализированных клеток, как сперматозоиды.

Клеточные включения.

Помимо обязательно имеющихся органоидов, в клетке есть образования то появляющиеся, то исчезающие в зависимости от ее состояния. Эти образования получили название клеточных включений. Чаще всего клеточные включения находятся в цитоплазме и представляют собой питательные вещества или гранулы веществ, синтезируемых этой клеткой. Это могут быть мелкие капли жира, гранулы крахмала или гликогена, реже - гранулы белки , кристаллы солей.


Клеточный центр. Цитоскелет,. Микротрубочки. Центриоли. Веретено деления. Реснички. Жгутики. Базалъное тельце. Клеточные включения.


1. Каковы функции клеточного центра?
2. Где расположены центриоли?
3. Каковы функции центриолей в клетке?
4. В чем сходство и различие между ресничками и жгутиками?
5. Назовите примеры клеточных включений.

Каменский А. А., Криксунов Е. В., Пасечник В. В. Биология 9 класс
Отправлено читателями с интернет-сайта

Содержание урока конспект уроку и опорный каркас презентация урока акселеративные методы и интерактивные технологии закрытые упражнения (только для использования учителями) оценивание Практика задачи и упражнения,самопроверка практикумы, лабораторные, кейсы уровень сложности задач: обычный, высокий, олимпиадный домашнее задание Иллюстрации иллюстрации: видеоклипы, аудио, фотографии, графики, таблицы, комикси, мультимедиа рефераты фишки для любознательных шпаргалки юмор, притчи, приколы, присказки, кроссворды, цитаты Дополнения внешнее независимое тестирование (ВНТ) учебники основные и дополнительные тематические праздники, слоганы статьи национальные особенности словарь терминов прочие Только для учителей

Включения – непостоянные и необязательные компоненты клеток. Могут содержать разнообразные химические вещества.

Включения делятся на:

Трофические (запас питательных веществ),Трофические включения . Это структуры, в которых клетки и организм в целом запасают питательные вещества, необходимые в условиях энергетического дефицита, недостатка структурных молекул (при голодании). Примером трофических включений служат гранулы с гликогеном (печеночные клетки, мышечные клетки и симпласты), липидные включения в жировых и других клетках.

Секреторные (вещества, предназначенные для секреции),Секреторные включения . Представляют собой секреторные гранулы, которые выделяются из клетки путем экзоцитоза. По химическому составу их подразделяют на белковые (серозные), жировые (липидные, или липосомы), слизистые (содержат мукополисахариды) и др. Количество включений зависит от функциональной активности клетки, стадии секреторного цикла, степени зрелости клетки. Особенно много гранул в дифференцированных, функционально активных клетках в фазу накопления секреторного цикла.

Экскреторные (продукты метаболизма, предназначенные для выведения из клетки),Экскреторные включения . Это включения веществ, захватываемых клеткой из внутренней среды и выводимых из организма: токсические вещества, продукты метаболизма, инородные структуры. Нередко экскреторные включения встречаются в эпителии канальцев почки, в первую очередь в проксимальных. Проксимальные канальцы выводят ненужные организму вещества, которые не могут быть отфильтрованы через клубочковый аппарат.

Пигментные (пигменты).Пигментные включения . Этот тип включений придает окраску клеткам; обеспечивает защитную функцию, например, гранулы меланина в пигментных клетках кожи предохраняют от солнечных ожогов. Пигментные включения могут состоять из продуктов жизнедеятельности клетки: гранулы с липофусцином в нейронах, гемосидерин в макрофагах.

Понятие о жизненном цикле клетки: стадии и их морфофункциональная характеристика. Особенности жизненного цикла у различных видов клеток. Регуляция жизненного цикла: понятие, классификация факторов, регулирующих пролиферативную активность.

В жизненном цикле любой клетки различают 5 периодов: фаза роста и размножения в недифференцированном состоянии, фаза дифференцировки, фаза нормальной активности, фаза старения и терминальная фаза дезинтеграции и смерти.

Рост и размножение . Сразу же после своего «появления на свет» в момент деления материнской клетки дочерняя клетка начинает вырабатывать белки в соответствии с типом, предписанным ей генетическим кодом. Клетка растет, сохраняя при этом недифференцированный характер эмбриональной клетки - это период роста.

Дифференцировка . Возможен и другой тип развития. После начального роста и размножения клетка начинает дифференцироваться, т.е. морфологически и функционально специализироваться. Процесс дифференцировки, обусловленный одновременно действием генов и влиянием внешней среды, вначале в течение некоторого времени обратим. Его можно приостановить, воздействуя различными факторами.

Процесс дифференцировки - это развитие из однородного клеточного материала резко отличающихся друг от друга клеток и тканей различных органов. Дифференцированные клетки характеризуются своими морфологическими и особыми функциональными свойствами. Эти свойства обусловлены структурными и энзиматическими особенностями их специфических белков. Некоторые эмбриональные дифференцировки клеток и даже органов зависят от свойства клеточных мембран; свойства эти связаны со структурными и функциональными характеристиками белка. Таким образом, в основе всякой дифференцировки лежат структурные изменения белка, дифферен-цировка представляет собой процесс направленного изменения.

Гибель клетки - постепенный процесс: вначале в клетке возникают обратимые повреждения, совместимые с жизнью; затем повреждения приобретают необратимый характер, но некоторые функции клетки сохраняются, и, наконец, наступает полное прекращение всех функций.

Уровни и формы организации живого. Определение ткани. Эволюция тканей. Морфофункциональная классификация тканей по Келликеру и Лейдигу. Структурные элементы тканей. Понятие о стволовых клетках, популяциях клеток и дифферонах. Классификация тканей согласно теории дифферонного строения.

Системно-структурные уровни организации многообразных форм живого достаточно многочисленны: молекулярный , субклеточный, клеточный, органотканевый, организменный, популяционный, видовой, биоценотический, биогеоценотический, биосферный. Могут быть определены и другие уровни. Но во всем многообразии уровней выделяются некоторые основные. Критерием выделения основных уровней выступают специфические дискретные структуры и фундаментальные биологические взаимодействия. На основании этих критериев достаточно четко выделяются следующие уровни организации живого: молекулярно-генетический, организменный, популяционно-видовой, биогеоценотический.

Ткань - это возникшая в эволюции частная система организма, которая состоит из одного или нескольких дифферонов клеток и их производных и обладает специфическими функциями благодаря кооперативной деятельности всех её элементов.
Все ткани делятся на 4 морфофункциональные группы: I. эпителиальные ткани (куда относятся и железы); II.ткани внутренней среды организма - кровь и кроветворные ткани, соединительные ткани; III. мышечные ткани, IV. нервная ткань. Внутри этих групп (кроме нервной ткани) различают те или иные виды тканей. Например, мышечные ткани подразделяются, в основном, на 3 вида: скелетную, сердечную и гладкую мышечные ткани. Ещё более сложными являются группы эпителиальных и соединительных тканей. Ткани, принадлежащие к одной группе, могут иметь разное происхождение. Например, эпителиальные ткани происходят из всех трёх зародышевых листков. Таким образом, тканевая группа - это совокупность тканей, имеющих сходные морфофункциональные свойства независимо от источника их развития. В образовании ткани могут принимать участие следующие элементы: клетки, производные клеток (симпласты, синцитии), постклеточные структуры (такие, как эритроциты и тромбоциты), межклеточное вещество (волокна и матрикс). Каждая ткань отличается определённым составом таких элементов. Например, скелетная мышечная ткань - это лишь симпласты (мышечные волокна. Этот состав обуславливает специфические функции каждой ткани. Причём, выполняя эти функции, элементы тканей обычно тесно взаимодействуют между собой, образуя единое целое.
морфофункциональная классификация Келликера и Лейдига, созданная ими в середине пршлого столетия. Согласно этой классификации

различают следующие 4 группы тканей:

1.Эпителиальные или покровные ткани,объединяющиеся на основании морфологических признаков.

2.Ткани внутренней среды , включающие в себя кровь, лимфу, костную, хрящевую и собственно соединительную ткани. Все эти ткани объединяются в одну группу по двум признакам. по общности строения (все они состоят из клеток и межклеточного вещества) и происхождения (все они развиваются из мезенхимы).

3.Мышечные ткани (гладкая, поперечно-полосатая, сердечная, миоэпителиальные клетки и мионевральные элементы). Ткани этой группы обладают одной функцией – сократимостью, но происхождение и строение их разное.

4.Нервная ткань. Эта ткань представлена различными гистологическими элементами клетками и глией. Единственным общим признаком для нервных клеток и глиальных элементов является их постоянное совместное расположение, т.е. топографический признак. Нервная ткань обеспечивает интегративную функцию, т.е. обеспечивает единство организма.

Живучесть этой классификации объясняется тем, что она отражает различные связи организма с внешней средой, а также внутри самого организма.

СТРУКТУРНЫЕ ЭЛЕМЕНТЫ ТКАНЕЙ:

Ткани состоят из клеток и межклеточного вещества. Клетки находятся во взаимодействии друг с другом и межклеточным веществом. Это обеспечивает функционирование ткани как единой системы. В состав органов входят различные ткани (одни образуют строму, другие – паренхиму). Каждая ткань имеет или имела в эмбриогенезе стволовые клетки.

СИМПЛАСТ – неклеточная многоядерная структура. Два способа образования: путем объединения клеток, между которыми исчезают клеточные границы; в результате деления ядер без цитотомии (образования перетяжки). Например скелетная мышечная ткань.

МЕЖКЛЕТОЧНОЕ ВЕЩЕСТВО – продукт жизнедеятельности клеток. Состоит из двух частей: аморфное (основное) вещество (гелеозоль, протеогликаны, ГАГ, гликопротеиды) и волокна (коллагеновые определяют прочность на разрыв, эластические – прочность на растяжение, ретикулярные – коллаген 3 типа)

Теории дифференного строения тканей . Согласно этой теории все ткани нашего организма состоят из одного или нескольких дифферонов. Клеточный дифферон – это совокупность клеточных форм, составляющих линию дифференцировки. Клеточный дифферон образуют клетки возрастающей степени зрелости одного гистогенетического ряда. Исходной формой линии клеточной дифференцировки (клеточного дифферона) служат стволовые клетки. Все ткани нашего организма имеют или имели в эмбриональном периоде стволовые клетки. Стволовые клетки являются малодифференцированными, т.е. они не прошли путь дифференцировки до конца.

При делении стволовой клетки она стоит перед выбором остаться стволовой клеткой, какой была родительская, или встать на путь, ведущий к полной дифференцировке. Установлено, что стволовая клетка может делиться симметрично и ассимметрично. При симметричном делении образуются из 1 стволовой клетки две новых стволовых клеток Следующие стадии гистогенетического ряда образуют субстволовые (коммитированные) клетки-предшественники, которые могут дифференцироваться только в одном направлении. Дифферон заканчивается стадией зрелых функционирующих клеток. Различают основные (полные) и неполные диффероны в составе ткани Условно в составе клеточного дифферона можно выделить начальную камбиальную часть, среднюю дифференцирующуюся часть и конечную – высоко дифференцирующуюся часть, в которых степень пролиферативной активности клеток различна.