Клетки сателлиты. Где располагаются клетки-сателлиты скелетной мышечной ткани


КЛЕТКИ-САТЕЛЛИТЫ

см. Глиоциты мантийные.

Медицинские термины. 2012

Смотрите еще толкования, синонимы, значения слова и что такое КЛЕТКИ-САТЕЛЛИТЫ в русском языке в словарях, энциклопедиях и справочниках:

  • САТЕЛЛИТЫ
    зубчатые колёса планетарных передач, совершающие сложное движение, - вращающиеся вокруг своих осей и вокруг оси центрального колеса, с которым …
  • ТРАВМЫ ГРУДНОЙ КЛЕТКИ в Медицинском словаре:
  • ТРАВМЫ ГРУДНОЙ КЛЕТКИ в Медицинском большом словаре:
    Травмы грудной клетки составляют 10-12% травматических повреждений. Четверть травм грудной клетки - тяжёлые повреждения, требующие неотложного хирургического вмешательства. Закрытые повреждения …
  • SUPREME RULER 2010 в Списке пасхалок и кодов к играм:
    Коды набираются прямо во время игры: cheat georgew - получить $10000; cheat instantwin - выиграть сценарий; cheat allunit - производство …
  • КЛЕТКА в Энциклопедии Биология:
    , основная структурная и функциональная единица всех живых организмов. Клетки существуют в природе как самостоятельные одноклеточные организмы (бактерии, простейшие и …
  • БУЦЦЦЕЛЛАРИИ в Словаре военно-исторических терминов:
    часто употреблявшееся в V в. н.э. обозначение для военной свиты полководца (комиты, сателлиты и …
  • НЕЙРОГЛИЯ ПЕРИФЕРИЧЕСКАЯ в Медицинских терминах:
    (n. peripherica) Н., входящая в состав периферической нервной системы; включает леммоциты, клетки-сателлиты вегетативных ганглиев и …
  • ГЛИОЦИТ МАНТИЙНЫЕ в Медицинских терминах:
    (g. mantelli, lnh; син. клетки-сателлиты) Г., расположенные на поверхности тел …
  • ПЛАНЕТАРНАЯ ПЕРЕДАЧА в Большом энциклопедическом словаре:
    зубчатая передача, имеющая колеса с перемещающимися геометрическими осями (сателлиты), которые обкатываются вокруг центрального колеса. Имеет малые габариты и массу. Используется …
  • ЦИТОЛОГИЯ в Большой советской энциклопедии, БСЭ:
    (от цито... и...логия) , наука о клетке. Ц. изучает клетки многоклеточных животных, растений, ядерно-цитоплазматические комплексы, не расчленённые …
  • ПЛАНЕТАРНАЯ ПЕРЕДАЧА в Большой советской энциклопедии, БСЭ:
    передача, механизм для передачи вращательного движения цилиндрическими или коническими зубчатыми (реже фрикционными) колёсами, в состав которого входят т. н. сателлиты …
  • НЕЙРОГЛИЯ в Большой советской энциклопедии, БСЭ:
    (от нейро... и греч. glia - клей), глия, клетки в мозге, своими телами и отростками заполняющие пространства между нервными клетками …
  • ВЕЛИКАЯ ОТЕЧЕСТВЕННАЯ ВОЙНА СОВЕТСКОГО СОЮЗА 1941-45 в Большой советской энциклопедии, БСЭ:
    Отечественная война Советского Союза 1941-45, справедливая, освободительная война советского народа за свободу и независимость социалистической Родины против фашистской Германии и …
  • ЭКСПЕРИМЕНТАЛЬНАЯ ЭМБРИОЛОГИЯ в Энциклопедическом словаре Брокгауза и Евфрона.
  • ЦИТОЛОГИЯ в Энциклопедическом словаре Брокгауза и Евфрона.
  • ЦЕНТРОЗОМА в Энциклопедическом словаре Брокгауза и Евфрона.
  • ЦЕНТРАЛЬНАЯ НЕРВНАЯ СИСТЕМА в Энциклопедическом словаре Брокгауза и Евфрона.
  • ХАРОВЫЕ в Энциклопедическом словаре Брокгауза и Евфрона.
  • ФАГОЦИТЫ
    клетки, обладающие способностью захватывать и переваривать твердые вещества. Впрочем, между захватыванием твердых веществ и жидких, по-видимому, нет резкой разницы. Сначала …
  • ТКАНИ РАСТЕНИЙ в Энциклопедическом словаре Брокгауза и Евфрона.
  • ТКАНИ ЖИВОТНЫЕ в Энциклопедическом словаре Брокгауза и Евфрона.
  • СИМПАТИЧЕСКАЯ НЕРВНАЯ СИСТЕМА в Энциклопедическом словаре Брокгауза и Евфрона.
  • ПРОТОПЛАЗМА ИЛИ САРКОДА в Энциклопедическом словаре Брокгауза и Евфрона.
  • НАСЛЕДСТВЕННОСТЬ в Энциклопедическом словаре Брокгауза и Евфрона:
    (физиол.) — Под Н. разумеется способность организмов передавать свои свойства и особенности от одного поколения в другое, покуда длится самый …
  • ПЛАНЕТАРНАЯ ПЕРЕДАЧА в Современном энциклопедическом словаре:
  • ПЛАНЕТАРНАЯ ПЕРЕДАЧА
    зубчатая передача, имеющая колеса (сателлиты) с осями, перемещающимися вокруг центрального колеса, вращающегося вокруг неподвижной оси. Механизмы с планетарной передачей имеют …
  • САТЕЛЛИТ в Энциклопедическом словарике:
    а, м. 1. астр. Спутник планеты. Луна - с. Земли. 2. одуш. Приспешник, исполнитель чужой воли. Сателлиты шовинизма.||Ср. АДЕПТ, …
  • ПЛАНЕТАРНАЯ в Большом российском энциклопедическом словаре:
    ПЛАНЕТ́АРНАЯ ПЕРЕДАЧА, зубчатая передача, имеющая колёса с перемещающимися геом. осями (сателлиты), к-рые обкатываются вокруг центр. колеса. Имеет малые габариты и …
  • ЭМБРИОНАЛЬНЫЕ ЛИСТЫ ИЛИ ПЛАСТЫ
  • ЭКСПЕРИМЕНТАЛЬНАЯ ЭМБРИОЛОГИЯ* в Энциклопедии Брокгауза и Ефрона.
  • ЦИТОЛОГИЯ в Энциклопедии Брокгауза и Ефрона.
  • ЦЕНТРОЗОМА в Энциклопедии Брокгауза и Ефрона.
  • ЦЕНТРАЛЬНАЯ НЕРВНАЯ СИСТЕМА в Энциклопедии Брокгауза и Ефрона.
  • ХАРОВЫЕ в Энциклопедии Брокгауза и Ефрона.
  • ФИЗИОЛОГИЯ РАСТЕНИЙ
    Содержание: Предмет Ф. ? Ф. питания. ? Ф. роста. ? Ф. формы растений. ? Ф. размножения. ? Литература. Ф. растений …
  • ФАГОЦИТЫ в Энциклопедии Брокгауза и Ефрона:
    ? клетки, обладающие способностью захватывать и переваривать твердые вещества. Впрочем, между захватыванием твердых веществ и жидких, по-видимому, нет резкой разницы. …
  • ТКАНИ РАСТЕНИЙ* в Энциклопедии Брокгауза и Ефрона.
  • ТКАНИ ЖИВОТНЫЕ* в Энциклопедии Брокгауза и Ефрона.
  • 27.1.Происхождение макрофагов
  • 27.2.Микроскопическое строение
  • 27.3.Субмикроскопическое строение
  • 27.4.Зависимость строения от функциональной активности
  • 27.5.Функции, специализированные типы макрофагов
  • 28.Тучные клетки (тканевые базофилы)
  • 28.2.Микроскопическое строение
  • 28.3.Субмикроскопическое строение
  • 28.4.Состав специфических гранул
  • 28.5.Функции. Взаимодействия с другими клетками крови и соединительной ткани
  • 29.Соединнительные ткани со специальными свойствами
  • 29.1.Классификация. Особенности строения
  • 29.2.Локализация в организме
  • 29.3.Типы, строение и функции жировой ткани
  • 29.4.Строение и функции ретикулярной ткани
  • 29.5.Строение и функции других тканей
  • 30.Межклеточное вещество рыхлой соединительной ткани
  • 30.1.Функциональное значение
  • 30.2.Состав матрикса
  • 30.3.Виды волокон. Их морфологическая характеристика
  • 30.4.Физические свойства волокон
  • 30.5.Значение клеток в образовании межклеточного вещества
  • 31.Хрящевая ткань
  • 31.1.Виды хряща (классификация)
  • 31.2.Строение хрящевой ткани
  • 31.3.Особенности межклеточного вещества
  • 31.4.Особенности клеток
  • 31.5.Функциональное значение
  • 32.Костная ткань
  • 32.1.Виды костной ткани
  • 32.2.Функционльное значение
  • 32.3.Структурные компоненты: клетки, особенности межклеточного вещества
  • 32.4.Строение ретикулофиброзной костной ткани
  • 32.5.Локализация ретикулофиброзной костной ткани в организме
  • 33.Клеточные элементы костной ткани
  • 33.1.Остеоцит, его строение
  • 33.2.Остеобласт, его строение
  • 33.3.Функции остеобласта
  • 33.4.Остеокласт, его строение
  • 33.5.Функции остеокласта
  • 34.Пластинчатая костная ткань
  • 34.1.Строение костной пластинки
  • 34.2.Структура остеона
  • 34.3.Виды костных пластинок
  • 34.4.Особенности строения компактной и губчатой костной ткани
  • 34.5.Строение и значение надкостницы
  • 35.Прямой остеогенез
  • 35.1.Стадии прямого остеогенеза
  • 35.2.Остеогенные клетки. Их строение
  • 35.3.Образование и минерализация межклеточного вещества
  • 35.4.Перестройка костной ткани
  • 35.5.Регуляция остеогенеза
  • 36.Непрямой остеогенез
  • 36.1.Стадии непрямого остеогенеза
  • 36.2.Образование первичного центра окостенения
  • 36.3.Образование вторичных центров окостенения
  • 36.4.Ремоделирование структуры кости
  • 36.5.Регуляция остеогенеза и перестройки костной ткани
  • 37.Мышченая ткань
  • 37.2.Классификация мышечных тканей
  • 37.3.Общая морфологическая характеристика: опорный, трофический и сократительный аппараты
  • 37.4.Мышечноподобные сократительные клетки, их локализация, строение и функции
  • 37.5.Регенерация различных типов мышечных тканей
  • 38.Поперечно-полосатая мышечная ткань
  • 38.2.Строение мышечного волокна
  • 38.3.Типы мышечных волокон
  • 38.4.Структура миофибриллы
  • 38.5.Механизм сокращения мышечного волокна
  • Механизм участия атф в сокращении
  • 39.Строение мышцы как органа
  • 39.1.Типы мышечных волокон, их морфологическая и гистохимическая характеристики
  • 39.2.Наружные оболочки мышцы, их значение
  • 39.3.Внутренние оболочки, их значение
  • 39.4.Связь мышцы с сухожилием
  • 39.5.Гистогенез мышц
  • 40.Сердечная мышечная ткань
  • 40.2.Особенности строения
  • 40.3. Виды кардиомиоцитов
  • 40.4.Строение и функции различных видов кардиомиоцитов
  • 40.5.Регенерация сердечной мышечной ткани
  • 42.Нервная ткань
  • 42.2.Структурные компоненты, их классификация
  • 42.3.Общее строение нейронов
  • 42.4.Субмикроскопическое строение нейронов
  • 42.5.Морфологическая и функциональная классификация нейронов (примеры)
  • 43.Нервные волокна
  • 43.1.Структурные компоненты нервных волокон
  • 43.2.Строение безмиелиновых нервных волокон. Примеры их локализации.
  • 43.3.Строение миелиновых нервных волокон. Примеры их локализации.
  • 43.4.Образование миелиновой оболочки
  • 43.5.Функциональные особенности нервных волокон
  • 44.Нервные окончания
  • 44.1.Классификация нервных окончаний
  • 44.2.Эффекторные нервные окончания. Их виды и строение
  • 44.3. Моторные бляшки, их строение. Основы механизма нервно-мышечной передачи
  • 44.4.Рецепторы. Их классификация и строение
  • 44.5.Строение и функции нервно-мышечных веретен. Локализация и компоненты.
  • Принцип работы веретена.
  • 45.Синапсы
  • 45.1.Общая характеристика синаптических контактов
  • 45.2.Строение химических синапсов
  • 45.3.Морфологическая классификация синапсов
  • 45.4.Понятие о нейромедиаторах (нейротрансмиттерах)
  • 45.5.Механизм синаптической передачи нервного импульса
  • 46.Рецепторные нервные окончания
  • 46.1.Рецепторы как периферические отделы органов чувств. Поняти о первично- и вторичночувствующих органах чувств (примеры)
  • 46.5.Функциональная характеристика рецепторов (примеры)
  • 46.2.Морфологическая характеристика рецепторов
  • 46.3.Строение свободных нервных окончаний (примеры)
  • 46.4.Строение инкапсулированных окончаний (примеры)
  • 47.Нейроглия
  • 47.1.Классификация
  • 47.3.Локализация различных видов глиальных клеток
  • 47.4.Строение различных видов глиальных клеток
  • 47.5.Функции нейроглии
  • 47.2.Источники развития

    Подразделение клеток на нейроны и глию.

    Нервная ткань в эмбриогенезе возникла последней. Закладывается на 3 неделе эмбригенеза, когда образуется нервная пластинка, которая превращается в нервный желобок, затем в нервную трубку. В стенке нервной трубки пролиферируют стволовые вентрикулярные клетки, из них образуются нейробласты  из них формируются нервные клетки, Нейробласты дают начало огромному количеству нейронов (10 12), но вскоре после рождения теряют способность к делению.

    и глиобласты  из них формируются глиальные клетки  это астроциты, олигодендроциты и эпендимоциты. Таким образом, нервная ткань включает нервные и глиальные клетки.

    Глиобласты, долго сохраняя пролиферативную активность, дифференцируются в глиоциты (некоторые из которых тоже способны к делению).

    В это же время, т. е. в эмбриональном периоде, значительная часть (до 40-80 %) образующихся нервных клеток погибает путем апоптоза. Считают, что это, во-первых, клетки с серьезными повреждениями хромосом (в т. ч. хромосомной ДНК) и, во-вторых, клетки, отростки которых не смогли установить связь с соответствующими структурами (клетками-мишенями, органами чувств и т. д.)

    47.3.Локализация различных видов глиальных клеток

      Глия центральной нервной системы:

    макроглия - происходит из глиобластов; сюда относятся олигодендроглия, астроглия и эпендимная глия;

    микроглия - происходит из промоноцитов.

    Глия периферической нервной системы (часто её рассматривают как разновидность олигодендроглии): мантийные глиоциты (клетки-сателлиты, или глиоциты ганглиев),

    нейролеммоциты (шванновские клетки).

    47.4.Строение различных видов глиальных клеток

    Кратко:

    Подробно: Астроглия - представлена астроцитами самыми крупными из глиальных клеток, которые встречаются во всех отделах нервной системы. Астроциты характеризуются светлым овальным ядром, цитоплазмой с умеренно развитыми важнейшими органеллами, многочисленными гранулами гликогена и промежуточными филаментами. Последние из тела клетки проникают в отростки и содержат особый глиальный фибриллярный кислый белок (ГФКБ), который служит маркером астроцитов. На концах отростков имеются пластинчатые расширения ("ножки"), которые, соединяясь друг с другом, в виде мембран окружают сосуды или нейроны. Астроциты образуют щелевые соединения между собой, а также с клетками олигодендропгаи и эпендимной глии.

    Астроциты подразделяются на две группы:

      Протоплазматические (плазматические) астроциты встречаются преимущественно в сером веществе ЦНС\ для них характерно наличие многочисленных разветвленных коротких сравнительно толстых отростков, невысокое содежание ГФКБ.

      Волокнистые (фиброзные) астроциты располагаются, в основном, в белом веществе ЦНС. От их тел отходят длинные тонкие незначительно ветвящиеся отростки. Характеризуются высоким содержанием ГФКБ.

    Функции астроглии

      опорная формирование опорного каркаса ЦНС, внутри которого располагаются другие клетки и волокна; в ходе эмбрионального развития служат опорными и направляющими элементами, вдоль которых происходит миграция развивающихся нейронов. Направляющая функция связана также с секрецией ростовых факторов и продукцией определенных компонентов межклеточного вещества, распознаваемых эмбриональными нейронами и их отростками.

      разграничительная, транспортная и барьерная (направлена на обеспечение оптимального микроокружения нейронов):

      метаболическая и регуляторная считается одной из наиболее важных функций астроцитов, которая направлена на поддержание определенных концентраций ионов К + и медиаторов в микроокружении нейронов. Астроциты совместно с клетками олигодендроглии принимают участие в метаболизме медиаторов (катехоламинов, ГАМК, пептидов).

      защитная (фагоцитарная, иммунная и репаративная) участие в различных защитных реакциях при повреждении нервной ткани. Астроциты, как и клетки микроглии характеризуются выраженной фагоцитарной активностью. Подобно последним, они обладают и признаками АПК: экспрессируют на своей поверхности молекулы МНС II класса, способны захватывать, подвергать процессингу и представлять антигены, а также вырабатывать цитокины. На завершающих этапах воспалительных реакций в ЦНС астроциты, разрастаясь, формируют на месте поврежденной ткани глиальный рубец.

    Эпендимная глия , или эпендима образована клетками кубической или цилиндрической формы (эпендимоцитами), однослойные пласты которых выстилают полости желудочков головного мозга и центрального канала спинного мозга. К эпендимной глии ряд авторов относит и плоские клетки, образующие выстилки мозговых оболочек (менинготелий).

    Ядро эпендимоцитов содержит плотный хроматин, органеллы умеренно развиты. Апикальная поверхность части эпендимоцитов несет реснички, которые своими движениями перемещают спинномозговую жидкость (СМЖ), а от базального полюса некоторых клеток отходит длинный отросток, протягивающийся до поверхности мозга и входящий в состав поверхностной пограничной глиальной мембраны (краевой глии).

    Поскольку клетки эпендимной глии образуют пласты, в которых их латеральные поверхности связаны межклеточными соединениями, по морфофункциональным свойствам ее относят к эпителиям (эпендимоглиального типа по Н.Г.Хлопину). Базальная мембрана, по данным некоторых авторов, присутствует не везде. В отдельных участках эпендимоциты обладают характерными структурно-функциональные особенностями; к таким клеткам, в частности, относят хороидные эпендимоциты и танициты.

    Хороидные эпендимоциты - эпендимоциты в области сосудистых сплетений участков образования СМЖ. Они имеют кубическую форму и покрывают выпячивания мягкой мозговой оболочки, вдающиеся в просвет желудочков головного мозга (крыша III и IV желудочков, участки стенки боковых желудочков). На их выпуклой апикалыюй поверхности имеются с многочисленные микроворсинки, латеральные поверхности связаны комплексами соединений, а базальные образуют выпячивания (ножки), которые переплетаются друг с другом, формируя базальный лабиринт. Слой эпендимоцитов располагается на базальной мембране, отделяющей его от подлежащей рыхлой соединительной ткани мягкой мозговой оболочки, в которой находится сеть фенестрированных капилляров, обладающих высокой проницаемостью благодаря многочисленным порам в цитоплазме эндотелиальных клегок. Эпендимопиты сосудистых сплетений входят в состав гематоликворного барьера (барьера между кровью и СМЖ), через который происходит ультрафильтрация крови с образованием СМЖ (около 500 мл/сут).

    Танициты - специализированные клетки эпендимы в латеральных участках стенки III желудочка, инфундибулярного кармана, срединного возвышения. Имеют кубическую или призматическую форму, их апикальная поверхность покрыта микроворсинками и отдельными ресничками, а от базальной отходит длинный отросток, оканчивающийся пластинчатым расширением на кровеносном капилляре. Танициты поглощают вещества из СМЖ и транспортируют их по своему отростку в просвет сосудов, обеспечивая тем самым связь между СМЖ в просвете желудочков мозга и кровью.

    Функции эпендимной глии:

      опорная (за счет базальных отростков);

      образование барьеров:

      • нейроликворного (с высокой проницаемостью),

        гематоликворного

      ультрафильтрация компонентов СМЖ

    Олигодендроглия (от греч. oligo мало, dendron дерево и glia клей, т.е. глия с малым количеством отростков) обширная группа разнообразных мелких клеток (олигодендроцитов) с короткими немногочисленными отростками, которые окружают тела нейронов, входят в состав нервных волокон и нервных окончаний. Встречаются в ЦНС (сером и белом веществе) и ПНС; характеризуются темным ядром, плотной цитоплазмой с хорошо развитым синтетическим аппаратом, высоким содержанием митохондрий, лизосом и гранул гликогена.

    Клетки-сателлиты (мантийные клетки) охватывают тела нейронов в спинальных, черепномозговых и вегетативных ганлиях. Они имеют уплощенную форму, мелкое круглое или овальное ядро. Обеспечивают барьерную функцию, регулируют метаболизм нейронов, захватывают нейромедиаторы.

    Леммоциты (шванновские клетки) в ПНС и олигодендроциты в ЦНС участвуют в образовании нервных волокон, изолируя отростки нейронов. Обладают способностью к выработке миелиновой оболочки.

    Микроглия - совокупность мелких удлиненных звездчатых клеток (микроглиоцитов) с плотной цитоплазмой и сравнительно короткими ветвящимися отростками, располагающихся преимущественно вдоль капилляров в ЦНС. В отличие от клеток макроглии, они имеют мезенхимное происхождение, развиваясь непосредственно из моноцитов (или периваскулярных макрофагов мозга) и относятся к макрофагально-монопитарной системе. Для них характерны ядра с преобладанием гетерохрома! ина и высокое содержание лизосом в цитоплазме.

    Функция микроглии - защитная (в том числе иммунная). Клетки микроглии традиционно рассматривают как специализированные макрофаги ЦНС - они обладают значительной подвижностью, активируясь и увеличиваясь в числе при воспалительных и дегенеративных заболеваниях нервной системы, когда они утрачивают отростки, округляются и фагоцитируют остатки погибших клеток. Активированные клетки микроглии экспрессируют молекулы МНС I и II классов и рецептор CD4, выполняют в ЦНС функцию дендритных АПК, секретируют ряд цитокинов. Эти клетки играют очень важную роль в развитии поражений нервной системы при СПИДе. Им приписывают роль "троянского коня", разносящего (совместно с гематогенными моноцитами и макрофагами) ВИЧ по ЦНС. С повышенной активностью клеток микроглии, выделяющих значительные количества цитокинов и токсических радикалов, связывают и усиленную гибель нейронов при СПИДе механизмом апоптоза, который индуцируется в них вследствие нарушения нормального баланса цитокинов.

    Восстановление поврежденной мышечной ткани происходит благодаря клеткам-сателлитам. А они не могут функционировать без специального белка, выяснили ученые.

    Мышцы имеют замечательную способность к самовосстановлению. С помощью тренировок можно восстановить их после травмы, да и возрастная атрофия преодолевается при активном образе жизни. При растяжении мышцы болят, но обычно боль проходит через несколько дней.

    Этой способностью мышцы обязаны клеткам-сателлитам - особым клеткам мышечной ткани, которые соседствуют с миоцитами, или мышечными волокнами. Сами же мышечные волокна - основные структурно-функциональные элементы мышцы - представляют собой длинные многоядерные клетки, обладающие свойством сокращения, так как в их состав входят сократительные белковые нити - миофибриллы.

    Клетки-сателлиты - это, собственно, стволовые клетки мышечной ткани. При повреждениях мышечных волокон, которые возникают из-за травм или с возрастом, клетки-сателлиты интенсивно делятся.

    Они ремонтируют повреждения, сливаясь вместе и образуя новые многоядерные мышечные волокна.

    С возрастом количество клеток-сателлитов в мышечной ткани снижается, соответственно, снижается и способность мышц к восстановлению, а также сила мышц.

    Ученые из Института изучения сердца и легких Общества Макса Планка (Германия) выяснили молекулярную механику мышечного самовосстановления при помощи клеток-сателлитов, которая до сих пор не была досконально известна. О результатах они написали в журнале Cell Stem Cell.

    Их открытие, как считают ученые, поможет создать методику восстановления мышц, которую из лаборатории когда-нибудь можно будет перенести в клинику для лечения мышечной дистрофии. А может быть, и мышечной старости.

    Исследователи выявили ключевой фактор - белок под названием Pax7, который играет основную роль в мышечной регенерации.

    Собственно, этот белок в сателлитных клетках был известен давно, но специалисты считали, что основную роль белок играет сразу после рождения. Но оказалось, что он незаменим на всех этапах жизни организма.

    Чтобы точно выяснить его роль, биологи создали генетически измененных мышей, у которых белок Pax7 в сателлитных клетках не работал. Это привело к радикальному сокращению самих сателлитных клеток в мышечной ткани. Затем ученые вызвали повреждения мышиных мышц путем инъекции токсина. У нормальных животных мышцы начинали интенсивно регенерировать, и повреждения заживали. Но у генетически измененных мышей без белка Pax7 мышечная регенерация стала почти невозможна. В результате биологи наблюдали в их мышцах большое количество мертвых и поврежденных мышечных волокон.

    Ученые расценили это как доказательство ведущей роли белка Pax7 в мышечной регенерации.

    Мышечную ткань мышей рассмотрели под электронным микроскопом. У мышей без белка Pax7 биологи обнаружили очень немногие сохранившиеся сателлитные клетки, которые по строению сильно отличались от нормальных стволовых клеток. В клетках отмечались повреждения органелл, и было нарушено состояние хроматина - ДНК в совокупности с белками, который в норме определенным образом структурирован.

    Интересно, что сходные изменения появлялись в сателлитных клетках, которые культивировали долгое время в лаборатории в изолированном состоянии, без их «хозяев» - миоцитов. Клетки таким же образом деградировали, что и в организме генетически измененных мышей. А ученые обнаружили в этих деградировавших клетках признаки дезактивации белка Pax7, которая наблюдалась у мышей-мутантов. Дальше - больше: изолированные клетки-сателлиты через какое-то время переставали делиться, то есть стволовые клетки переставали быть стволовыми.

    Если же, напротив, повысить активность белка Pax7 в сателлитных клетках, они начинают делиться более интенсивно. Все говорит о ключевой роли белка Pax7 в регенеративной функции сателлитных клеток. Остается придумать, как использовать его в потенциальной клеточной терапии мышечной ткани.

    «Когда мышцы деградируют, например, при мышечной дистрофии, имплантация мышечных стволовых клеток будет стимулировать регенерацию, - объясняет Томас Браун, директор института.

    Понимание того, как работает Pax7, поможет модифицировать сателлитные клетки таким образом, чтобы сделать их как можно более активными.

    Это может привести к революции в лечении мышечной дистрофии и, возможно, позволит сохранить силу мышц в старости».

    А здоровые мышцы и физическая активность в пожилом возрасте - лучший способ отодвинуть возрастные болезни.

    ИЗВЕСТИЯ РАИ. СЕРИЯ БИОЛОГИЧЕСКАЯ, 200?, № 6, с. 650-660

    БИОЛОГИЯ КЛЕТКИ

    САТЕЛЛИТНЫЕ КЛЕТКИ МЫШЕЧНОЙ СИСТЕМЫ И РЕГУЛЯЦИЯ ВОССТАНОВИТЕЛЬНОГО ПОТЕНЦИАЛА МЫШЦ

    © 2007 г. Н. Д. Озерншк, О. В. Балан

    Институт биологии развития им. Н.К. Кольцова РАН, 119991 Москва, ул. Вавилова, 26

    E-mail: [email protected] Поступила в редакцию 26.03.2007 г.

    В обзоре анализируются основные аспекты биологии сателлитных клеток мышечной системы: идентификация, происхождение на ранних этапах развития, механизмы их самоподдержания за счет асимметричного деления, содержание в различных типах мышц и на разных этапах онтогенеза, роль регуляторных генов сем. Pax (в частности, Pax7) и их продуктов в контроле пролиферации, участие факторов роста (HGF, FGF, IGF, TGF-0) в активации этих клеток при повреждении мышц. Обсуждаются особенности начальных этапов миогенной дифференцировки активированных сателлитных клеток по пути, сходному с формированием мышц в ходе эмбрионального развития

    Поскольку стволовые клетки обладают способностью к самоподдержанию в течение всей жизни и потенциально могут дифференцироваться в различные клеточные типы, их изучение позволяет глубже понять механизмы поддержания тканевого гомеостаза во взрослом организме, а также использовать этот тип клеток для анализа направленной дифференцировки in vitro. Многие проблемы биологии стволовых клеток успешно решаются на модели сателлитных клеток мышц. Сателлитные клетки мышечной системы активно исследуются для анализа особенностей биологии стволовых клеток (Comelison, Wold, 1997; Seale, Rudnicki, 2000; Seale et al, 2000, 2001; Bailey et al, 2001; Charge, Rudnicki, 2004; Gros et al, 2005; Shinin et al., 2006).

    Дифференцировка клеток мышечной системы во время зародышевого развития и формирование клеток миогенного ряда из сателлитных клеток мышц взрослого организма - взаимосвязанные процессы. Сателлитные клетки в ходе заместительных и восстановительных процессов в мышцах взрослых животных проходят в основном тот же путь дифференцировки, что и миоген-ные клетки в период эмбрионального развития. Важнейшим элементом регуляции восстановительного потенциала мышц служит активация сателлитных клеток в ответ на те или иные воздействия или повреждение.

    САТЕЛЛИТНЫЕ КЛЕТКИ - СТВОЛОВЫЕ КЛЕТКИ МЫШЦ?

    Сателлитные клетки впервые были описаны Мауро в скелетных мышцах лягушки (Mauro, 1961) на основе анализа их морфологии и распо-

    ложения в зрелых мышечных волокнах. Позднее эти клетки были идентифицированы в мышцах птиц и млекопитающих (Schultz, 1976; Armand et al, 1983; Bischoff, 1994).

    Сателлитные клетки формируют стабильный самообновляющийся пул стволовых клеток в мышцах взрослого организма, где они участвуют в процессах роста и восстановления мускулатуры (Seale et al, 2001; Charge, Rudnicki, 2004). Отволо-вые клетки различных тканей, как известно, помимо экспрессии специфических генетических и белковых маркеров, а также способности формировать клоны, в определенных условиях дифференцируются в те или иные клеточные линии, что рассматривается как один из важных признаков стволовости. Первоначально считалось, что са-теллитные клетки мышц дают начало только одному типу клеток - миогенным предшественникам. Однако при более детальном исследовании этой проблемы было установлено, что в определенных условиях сателлитные клетки могут дифференцироваться in vitro в другие типы клеток: остеогенные и адипогенные (Katagiri et al., 1994; Teboul et al., 1995).

    Обсуждается также точка зрения, согласно которой в скелетных мышцах взрослых животных содержатся предшественники сателлитных клеток, которые и являются стволовыми клетками (Zammit, Beauchamp, 2000; Seale, Rudnicki, 2000; Charge, Rudnicki, 2004). Таким образом, вопрос о сателлитных клетках как стволовых клетках мышечной системы требует дальнейших исследований.

    Рис. 1. Сателлитные клетки бедренных мышц взрослой крысы, экспрессирующие специфический маркер Pax7 ] этих клеток: а - на периферии мышечных волокон, б - в клеточной культуре. Масштабная линейка: 5 мкм.

    ИДЕНТИФИКАЦИЯ САТЕЛЛИТНЫХ КЛЕТОК МЫШЦ

    Сателлитные клетки идентифицируются по нескольким критериям. Один из важных критериев - морфологический. Эти клетки локализованы в углублениях между базальной ламиной и сарколеммой миофибрилл. Для сателлитных клеток характерно высокое ядерно-цитоплазматиче-ское отношение, а также высокое содержание ге-терохроматина и уменьшенное содержание цито-плазматических органелл (Seale, Rudnicki, 2000; Charge, Rudnicki, 2004). Сателлитные клетки определяются также по экспрессии специфических генетических и белковых маркеров: прежде всего гена Pax7 и его белкового продукта - трас-крипционного фактора Pax7, который экспресси-руется в ядрах покоящихся и активированных сателлитных клеток (рис. 1). Скелетные мышцы мыши, дефицитные по гену Pax7, не отличаются от мышц дикого типа при рождении животного, однако они полностью лишены мышечных сателлитных клеток (Seale et al, 2000, 2001; Bailey et al., 2001; Charge, Rudnicki, 2004).

    В сателлитных клетках экспрессируются также стандартные маркерные гены стволовых клеток: CD34, Msx-1, MNF, ген рецептора c-Met (Bailey et al., 2001; Seale et al., 2001). В покоящихся сателлитных клетках не выявлялась экспрессия миогенных регуляторов сем. bHLH (Smith et al., 1994; Yablonka-Reuveni, Rivera, 1994; Cornelison, Wold, 1997; Cooper et al., 1999). Однако позднее в покоящихся сателлитных клетках был обнаружен очень низкий уровень экспрессии Myf5 -представителя сем. bHLH, экспрессирующегося на ранних этапах эмбрионального миогенеза (Beauchamp et al., 2000; Katagiri et al.).

    ПРОИСХОЖДЕНИЕ МЫШЕЧНЫХ САТЕЛЛИТНЫХ КЛЕТОК В ЭМБРИОГЕНЕЗЕ: СОМИТЫ ИЛИ ЭНДОТЕЛИЙ СОСУДОВ?

    Один из существенных вопросов биологии стволовых клеток, анализируемых на примере мышечной системы - происхождение сателлитных клеток в ходе онтогенеза. Развитие скелетных мышц у позвоночных происходит в эмбриогенезе, а пополнение пула миофибрилл за счет их дифференцировки из сателлитных клеток продолжается в течение всей жизни (Seale, Rudnicki, 2000; Bailey et cil., 2001; Seale et cil., 2001; Charge, Rudnicki, 2004). Из каких клеточных источников в зародыше формируется пул сателлитных клеток, функционирующий на протяжении всего онтогенеза? В соответствии с общепринятой точкой зрения сателлитные клетки происходят из муль-типотентных мезодермальных клеток сомитов.

    Мультипотентные клетки осевой мезодермы зародышей становятся коммитированными в направлении миогенной дифференцировки в ответ на локальные морфогенетические сигналы от соседних тканей: нервной трубки (гены сем. Shh и Wnt и их продукты), хорды (ген сем. Shh и его продукт), а также эктодермы. Однако только часть клеток мезодермы зародышей дает начало мышечной дифференцировке (рис. 2). Некоторая доля этих клеток продолжает делиться и не дифференцируется в мышцы. Часть таких клеток присутствует и во взрослой мускулатуре, где они служит предшественниками сателлитных клеток (Armand et al., 1983).

    Первоначально гипотеза сомитного происхождения сателлитных клеток основывалась на экспериментах по трансплантации сомитов у птиц: сомиты зародышей донора (перепела) пересаживали зародышам рецепиента (цыпленка) и

    Нервная трубка

    Миогенез из сателлитных клеток

    Миогенин MRF4

    Структурные ■ гены сократительных белков

    Повреждение, растяжение, физическая нагрузка, электростимуляция

    HGF FGF TGF-ß IGF

    Пролиферирующие миобласты

    I Миофибриллы J^-- Миогенин

    Структурные гены сократительных белков

    Рис. 2. Схема регуляции миогенеза в эмбриональном развитии и формирования, активации, дифференцировки сателлитных клеток. ДМ- дермамиотом, С - склеротом; Shh, Wnt - гены, продукты которых служат индукторами морфо-генетических процессов; Pax3, Myf5, MyoD, миогенин, MRF4 - специфические белковые регуляторы миогенеза; Pax7, CD-34, MNF, c-met - маркеры сателлитных клеток; HGF, FGF, TGF-ß, IGF - факторы роста, активирующие сателлит-ные клетки.

    после завершения эмбриогенеза у цыплят и у взрослых кур обнаружили донорские сомитные клетки перепела (Armand et al., 1983). На основании данных, полученных в этой работе, сделан вывод о сомитном происхождении всех миоген-ных клеточных линий, включая мышечные сателлитные клетки. Следует отметить также некоторые работы, указывающие на иное происхождение сателлитных клеток, в частности, из костного мозга, немышечных резидентных клеток и др. (Ferrari et al., 1998; Bittaer et al., 1999).

    Имеются также данные о формировании сателлитных клеток из эндотелия сосудов зародышей (De Angelis et al., 1999). В этой работе было показано наличие миогенных предшественников в дорсальной аорте зародышей мыши. Клоны клеток эндотелия этого сосуда при культивировании in vitro экспрессируют как эндотелиальные, так и миогенные маркеры, сходные с маркерами сателлитных клеток взрослых мышц. Кроме того клетки из таких клонов морфологически сходны с сателлитными клетками дефинитивных мышц. При инъекции этих клеток непосредственно в регенерирующую мышцу происходит их включение

    в регенерирующие фибриллы и эти клетки имеют признаки сателлитных. Далее, если эмбриональную аорту пересадить в мышцы новорожденных иммунодефицитных мышей, клетки из пересаженного сосуда могут давать начало множеству миогенных клеток (De Angelis et al., 1999; Minasi et al., 2002).

    Таким образом, эндотелиальные клетки, могут участвовать в формировании новых миофиб-рилл в ходе развития мышц за счет способности давать активированные сателлитные клетки, однако не ясно, способны ли эндотелиальные клетки вносить вклад в популяцию покоящихся сателлитных клеток взрослых мышц. Показано, что клетки эндотелия сосудов зародышей могут служить дополнительным источником сателлитных клеток в эмбриогенезе (De Angelis, 1999; Charge, Rudnicki, 2004).

    В последнее время обсуждается еще один источник происхождения сателлитных клеток. Было показано, что очищенные гематопоэтические стволовые клетки из костного мозга после их внутривенной инъекции облученным мышам могут участвовать в регенерации миофибрилл (Gus-

    soni et al., 1999). В д

    Для дальнейшего прочтения статьи необходимо приобрести полный текст . Статьи высылаются в формате

    БАЛАН О. В., МЮГЕ Н. С., ОЗЕРНЮК Н. Д. - 2009 г.

    А- В перимизии.

    Б- В эндомизии.

    В- Между базальной мембраной и плазмолеммой симпласта.

    Г- Под сарколеммой

    48. Что характерно для сердечной мышечной ткани?

    А- Мышечные волокна состоят из клеток.

    Б- Хорошая клеточная регенерация.

    В- Мышечные волокна анастомозируют между собой.

    Г- Регулируются соматической нервной системой.

    49. В каком участке саркомера нет тонких актиновых миофиламентов?

    А- В диске I.

    Б- В диске А.

    В- В зоне перекрытия.

    Г- В зоне Н-полосы.

    50. Чем отличается гладкая мышечная ткань от поперечно-полосатой скелетной?

    А- Состоит из клеток.

    Б- Входит в состав стенок кровеносных сосудов и внутренних органов.

    В- Состоит из мышечных волокон.

    Г- Развивается из миотомов сомитов.

    Д- Не имеет исчерченных миофибрилл.

    1.Какие межклеточные контакты присутствуют во вставочных дисках:

    А- десмосомы

    Б- промежуточные

    В- щелевые

    Г- полудесмосомы

    2.Виды кардиомиоцитов:

    А- секреторные

    Б- сократительные

    В- переходные

    Г- сенсорные

    Д- проводящие

    3.Секреторные кардиомиоциты:

    А- локализуются в стенке правого предсердия

    Б- секретируют кортикостероиды

    В- секретируют натрийуретический гормон

    Г- влияют на диурез

    Д- способствуют сокращению миокарда

    4.Определите верную последовательность и отразите динамику процесса гистогенеза поперечнополосатой скелетной мышечной ткани:1- образование мышечной трубки,2- дифференцировка миобластов на предшественников симпласта и клеток – сателлитов,3- миграция предшественников миобластов из миотома,4- формирование симпласта и клеток – сателлитов,5- объединение симпласта и клеток – сателлитов с образованием скелетного мышечного волокна

    5.Какие виды мышечной ткани имеют клеточную структуру:

    А- гладкая

    Б- сердечная

    В- скелетная

    6.Строение саркомера:

    А- участок миофибриллы, расположенный между двумя Н-полосами

    Б- состоит из А-диска и двух половинок I-дисков

    В- при сокращении мышцы не укорачивается

    Г- состоит из актиновых и миозиновых филаментов

    8.Гладкомышечные клетки:

    А- синтезирует компоненты базальной мембраны

    Б- кавеолы - аналог саркоплазматической сети

    В- миофибриллы ориентированы вдоль продольной оси клетки

    Г- плотные тельца – аналог Т-трубочек

    Д- актиновые филаменты состоят только из актиновых филаментов

    9.Белые мышечные волокна:

    А- большого диаметра с сильным развитием миофибрилл

    Б- активность лактатдегидрогеназы высокая

    В- много миоглобина

    Г- длительные сокращения, небольшой силы

    10. Красные мышечные волокна:

    А- быстрые, большой силы сокращения

    Б- много миоглобина

    В- мало миофибрилл, тонкие

    Г- высокая активность окислительных ферментов

    Д- митохондрий мало

    11.В ходе репаративного гистогенеза скелетной мышечной ткани происходят:

    А- деление ядер зрелых мышечных волокон

    Б- деление миобластов

    В- саркомерогенез внутри миобластов

    Г- образование симпласта

    12. Что общего имеют мышечные волокна скелетной и сердечной мышечной ткани:

    А- триады

    Б- исчерченные поперечно миофибриллы

    В- вставочные диски

    Г- клетки-сателлиты

    Д- саркомер

    Е- произвольный тип сокращения

    13. Укажите клетки между которыми присутствуют щелевые контакты:

    А- кардиомиоциты

    Б- миоэпителиальные клетки

    В- гладкие миоциты

    Г- миофибробласты

    14. Гладкомышечная клетка:

    А- синтезирует коллаген и эластин

    Б- содержит кальмодулин – аналог тропонина С

    В- содержит миофибриллы

    Г- саркоплазматическая сеть хорошо развита

    15. Роль базальной мембраны в регенерации мышечного волокна:

    А- препятствует разрастанию окружающей соединительной ткани и образованию рубца

    Б- поддерживает необходимый кислотно-щелочной баланс

    В- компоненты базальной мембраны используются для восстановление миофибрилл

    Г- обеспечивает правильную ориентацию мышечных трубочек

    16. Назовите признаки скелетной мышечной ткани:

    А- Образована клетками

    Б- Ядра расположены по периферии.

    В- Состоят из мышечных волокон.

    Г- Обладает только внутриклеточной регенерацией.

    Д- Развивается из миотомов

    1.Эмбриональный миогенез скелетной мышцы (верно все, кроме):

    А- миобласт мышц конечностей происходят из миотома

    Б- часть пролиферирующих миобластов образуют клетки-сателлиты

    В- в ходе митозов дочерние миобласты связаны цитоплазматическими мостиками

    Г- в мышечных трубочках начинается сборка миофибрилл

    Д- ядра перемещаются на периферию миосимпласта

    2.Триада скелетного мышечного волокна (верно все, кроме):

    А- Т-трубочки образованы инвагинациями плазмолеммы

    Б- в мембранах терминальные цистерны содержат кальциевые каналы

    В- возбуждение передается с Т-трубочек на терминальные цистерны

    Г- активация кальциевых каналов приводит к снижению Са2+ в крови

    3.Типичный кардиомиоцит (верно все, кроме):

    Б- содержит одно или два центрально расположенных ядра

    В- Т-трубочка и терминальная цистерна формируют диаду

    Д- вместе с аксоном двигательного нейрона образует нервно-мышечный синапс

    4. Саркомер (верно все, кроме):

    А- толстые нити состоят из миозина и С-белка

    Б- тонкие нити состоят из актина, тропомиозина, тропонина

    В- в состав саркомера входят один А-диск и две половины I-диска

    Г- в середине I -диска проходит Z-линия

    Д- при сокращении уменьшается ширина А-диска

    5. Структура сократительного кардиомиоцита (верно все, кроме):

    А- упорядоченное расположение пучков миофибрилл, прослоенных цепочками митохондрий

    Б- эксцентричное расположение ядра

    В- наличие анастамозирущих мостиков между клетками

    Г- межклеточные контакты – вставочные диски

    Д- центрально расположенные ядра

    6. При мышечном сокращении происходит (верно все, кроме):

    А- укорочение саркомера

    Б- укорочение мышечного волокна

    В- укорочение актиновых и миозиновых миофиламентов

    Г- укорочение миофибрилл

    7. Гладкий миоцит (верно все, кроме):

    А- клетка веретеновидной формы

    Б- содержит большое количество лизосом

    В- ядро расположено в центре

    Г- наличие актиновых и миозиновых филаментов

    Д- содержит десминовые и виментиновые промежуточные филаменты

    8. Сердечная мышечная ткань(верно все, кроме):

    А- не способна к регенерации

    Б- мышечные волокна образуют функциональные волокна

    В- пейсмекеры запускают сокращение кардиомиоцитов

    Г- вегетативная нервная система регулирует частоту сокращений

    Д- кардиомиоцит покрыт сарколеммой, базальная мембрана отсутствует

    9. Кардиомиоцит (верно все, кроме):

    А- клетка цилиндрической формы с разветвленными концами

    Б- содержит одно или два ядра в центре

    В- миофибриллы состоят из тонких и толстых нитей

    Г- вставочные диски содержат десмосомы и щелевые контакты

    Д- вместе с аксоном двигательного нейрона передних рогов спинного мозга образует нервно-мышечный синапс

    10. Гладкомышечная ткань (верно все, кроме):

    А- непроизвольная мышечная ткань

    Б- находится под контролем вегетативной нервной системы

    В- сократительная активность не зависит от гормональных влияний