Клетки живых организмов. Строение клетки человека, деление клетки и внешний вид, описание с картинками для детей Первая клетка человека



Все живые существа состоят из клеток - маленьких, окруженных мембраной полостей, заполненных концентрированным водным раствором химических веществ. Клетка - элементарная единица строения и жизнедеятельности всех живых организмов (кроме вирусов, о которых нередко говорят как о неклеточных формах жизни), обладающая собственным обменом веществ, способная к самостоятельному существованию, самовоспроизведению и развитию. Все живые организмы либо, как многоклеточные животные, растения и грибы, состоят из множества клеток, либо, как многие простейшие и бактерии, являются одноклеточными организмами. Раздел биологии, занимающийся изучением строения и жизнедеятельности клеток, получил название цитологии. Считается, что все организмы и все составляющие их клетки произошли эволюционным путем от общей преДНКовой клетки.

Примерная история клетки

Вначале под действием различных природных факторов (тепло, ультрафиолетовое излучение, электрические разряды) появились первые органические соединения, которые послужили материалом для построения живых клеток.

Ключевым моментом в истории развития жизни видимо стало появление первых молекул-репликаторов. Репликатор – это своеобразная молекула, которая является катализатором для синтеза своих собственных копий или матриц, что является примитивным аналогом размножения в животном мире. Из наиболее распространённых в настоящее время молекул, репликаторами являются ДНК и РНК. Например, молекула ДНК, помещённая в стакан с необходимыми компонентами, самопроизвольно начинает создавать свои собственные копии (хотя и значительно медленнее, чем в клетке под действием специальных ферментов).

Появление молекул-репликаторов запустило механизм химической (добиологической) эволюции. Первым субъектом эволюции были скорее всего примитивные, состоящие всего из нескольких нуклеотидов, молекулы РНК. Для этой стадии характерны (хотя и в очень примитивизированном виде) все основные черты биологической эволюции: размножение, мутации, смерть, борьба за выживание и естественный отбор.

Химической эволюции способствовал тот факт, что РНК является универсальной молекулой. Кроме того, что она является репликатором (т.е. носителем наследственной информации), она может выполнять функции ферментов (например, ферментов, ускоряющих репликацию, или ферментов, разлагающих конкурирующие молекулы).

В какой-то момент эволюции возникли РНК-ферменты, катализирующие синтез молекул липидов (т.е. жиров). Молекулы липидов обладают одним замечательным свойством: они полярные и имеют линейную структуру, причём толщина одного из концов молекулы больше, чем у другого. Поэтому молекулы липидов во взвеси самопроизвольно собираются в оболочки, близкие по форме к сферическим. Так что РНК, синтезирующие липиды, получили возможность окружать себя липидной оболочкой, значительно улучшившую устойчивость РНК к внешним факторам.

Постепенное увеличение длины РНК приводило к появлению многофункциональных РНК, отдельные фрагменты которых выполняли различные функции.

Первые деления клеток происходили, видимо, под действием внешних факторов. Синтез липидов внутри клетки приводил к увеличению её размеров и к потере прочности, так что большая аморфная оболочка разделялась на части под действием механических воздействий. В дальнейшем возник фермент, регулирующий этот процесс.

Строение клеток

Все клеточные формы жизни на земле можно разделить на два надцарства на основании строения составляющих их клеток - прокариоты (доядерные) и эукариоты (ядерные). Прокариотические клетки - более простые по строению, по-видимому, они возникли в процессе эволюции раньше. Эукариотические клетки - более сложные, возникли позже. Клетки, составляющие тело человека, являются эукариотическими. Несмотря на многообразие форм, организация клеток всех живых организмов подчинена единым структурным принципам.

Живое содержимое клетки - протопласт - отделено от окружающей среды плазматической мембраной, или плазмалеммой. Внутри клетка заполнена цитоплазмой, в которой расположены различные органоиды и клеточные включения, а также генетический материал в виде молекулы ДНК. Каждый из органоидов клетки выполняет свою особую функцию, а в совокупности все они определяют жизнедеятельность клетки в целом.

Прокариотическая клетка

Прокариоты (от лат. pro - перед, до и греч. κάρῠον - ядро, орех) - организмы, не обладающие, в отличие от эукариот, оформленным клеточным ядром и другими внутренними мембранными органоидами (за исключением плоских цистерн у фотосинтезирующих видов, например, у цианобактерий). Единственная крупная кольцевая (у некоторых видов - линейная) двухцепочечная молекула ДНК, в которой содержится основная часть генетического материала клетки (так называемый нуклеоид) не образует комплекса с белками-гистонами (так называемого хроматина). К прокариотам относятся бактерии, в том числе цианобактерии (сине-зелёные водоросли), и археи. Потомками прокариотических клеток являются органеллы эукариотических клеток - митохондрии и пластиды.

У прокариотических клеток есть цитоплазматическая мембрана, также как и эукариотических. У бактерий мембрана двуслойная (липидный бислой), у архей мембрана довольно часто бывает однослойной. Мембрана архей состоит из веществ, отличных от тех, из которых состоит мембрана бактерий. Поверхность клеток может быть покрыта капсулой, чехлом или слизью. У них могут быть жгутики и ворсинки.

Рис.1. Строение типичной клетки прокариот

Клеточное ядро, такое как у эукариот, у прокариот отсутствует. ДНК находится внутри клетки, упорядоченно свернутая и поддерживаемая белками. Этот ДНК-белковый комплекс называется нуклеоид. У эубактерий белки, которые поддерживают, ДНК отличаются от гистонов, которые образуют нуклеосомы (у эукариот). А у архибактерий гистоны есть, и этим они похожи на эукариот. Энергетические процессы у прокариотов идут в цитоплазме и на специальных структурах - мезосомах (выростах клеточной мембраны, которые закручены в спираль для увеличения площади поверхности, на которой происходит синтез АТФ). Внутри клетки могут находиться газовые пузырьки, запасные вещества в виде гранул полифосфатов, гранул углеводов, жировых капель. Могут присутствовать включения серы (образующейся, например, в результате бескислородного фотосинтеза). У фотосинтетических бактерий имеются складчатые структуры, называемые тилакоидами, на которых идет фотосинтез. Таким образом, у прокариот, в принципе, имеются те же самые элементы, но без перегородок, без внутренних мембран. Те перегородки, которые имеются, являются выростами клеточной мембраны.

Форма прокариотических клеток не так уж и разнообразна. Круглые клетки называются кокки. Такую форму могут иметь как археи, так и эубактерии. Стрептококки – это кокки, вытянутые в цепочку. Стафилококки – это «грозди» кокков, диплококки –кокки, объединенные по две клетки, тетрады - по четыре, и сарцины – по восемь. Палочкообразные бактерии называются бациллами. Две палочки – диплобациллы, вытянутые в цепочку – стрептобациллы. Еще выделяют коринеформные бактерии (с расширением на концах, похожим на булаву), спириллы (длинные завитые клетки), вибрионы (коротенькие загнутые клетки) и спирохеты (завиваются не так, как спириллы). Ниже проиллюстрировано все выше сказанное и приведены два представителя архебактерий. Хотя и археи, и бактерии относятся к прокариотическим (безядерным) организмам, строение их клеток имеет некоторые существенные отличия. Как уже было отмечено выше, бактерии имеют липидный бислой (когда гидрофобные концы погружены в мембрану, а заряженные головки торчат с двух сторон наружу), а археи могут иметь монослойную мембрану (заряженные головки имеются с двух сторон, а внутри единая целая молекула; эта структура может быть более жесткой, чем бислой). Ниже представлено строение клеточной мембраны архебактерии.

Эукариоты (эвкариоты) (от греч. ευ - хорошо, полностью и κάρῠον - ядро, орех) - организмы, обладающие, в отличие от прокариот, оформленным клеточным ядром, отграниченным от цитоплазмы ядерной оболочкой. Генетический материал заключён в нескольких линейных двухцепочных молекулах ДНК (в зависимости от вида организмов их число на ядро может колебаться от двух до нескольких сотен), прикреплённых изнутри к мембране клеточного ядра и образующих у подавляющего большинства (кроме динофлагеллят) комплекс с белками-гистонами, называемый хроматином. В клетках эукариот имеется система внутренних мембран, образующих, помимо ядра, ряд других органоидов (эндоплазматическая сеть, аппарат Гольджи и др.). Кроме того, у подавляющего большинства имеются постоянные внутриклеточные симбионты - прокариоты - митохондрии, а у водорослей и растений - также и пластиды.

Животная клетка

Строение клетки животного базируется на трех основных составляющих – ядро, цитоплазма и клеточная оболочка. Вместе с ядром цитоплазма образует протоплазму. Клеточная оболочка – это биологическая мембрана (перегородка), которая отделяет клетку от внешней среды, служит оболочкой для клеточных органоидов и ядра, образует цитоплазматические отсеки. Если поместить препарат под микроскоп, то строение животной клетки легко можно увидеть. Клеточная оболочка содержит три слоя. Внешний и внутренний слои белковые, а промежуточный – липидный. При этом липидный слой делится еще на два слоя – слой гидрофобных молекул и слой гидрофильных молекул, которые располагаются в определенном порядке. На поверхности клеточной мембраны располагается особая структура – гликокаликс, которая обеспечивает избирательную способность мембраны. Оболочка пропускает необходимые вещества и задерживает те, которые приносят вред.


Рис.2. Строение животной клетки

Строение животной клетки нацелено на обеспечение защитной функции уже на этом уровне. Проникновение веществ через оболочку происходит при непосредственном участии цитоплазматической мембраны. Поверхность этой мембраны достаточно значительна за счет изгибов, выростов, складок и ворсинок. Цитоплазматическая мембрана пропускает как мельчайшие частицы, так и более крупные. Строение животной клетки характеризуется наличием цитоплазмы, в большинстве своем состоящей из воды. Цитоплазма – это вместилище для органоидов и включений.

Кроме этого цитоплазма содержит и цитоскелет – белковые нити, которые участвуют в процессе деления клетки, отграничивают внутриклеточное пространство и поддерживают клеточную форму, способность сокращаться. Важная составляющая цитоплазмы – гиалоплазма, которая определяет вязкость и эластичность клеточной структуры. В зависимости от внешних и внутренних факторов гиалоплазма может менять свою вязкость – становиться жидкой или гелеобразной. Изучая строение животной клетки, нельзя не обратить внимание на клеточный аппарат – органоиды, которые находятся в клетке. Все органоиды имеют собственное специфическое строение, которое обусловлено выполняемыми функциями.

Ядро – центральная клеточная единица, которая содержит наследственную информацию и участвует в обмене веществ в самой клетке. К клеточным органоидам относятся эндоплазматическая сеть, клеточный центр, митохондрии, рибосомы, комплекс Гольджи, пластиды, лизосомы, вакуоли. Подобные органоиды есть в любой клетке, но, в зависимости от функции, строение животной клетки может отличаться наличием специфических структур.

Функции клеточных органоидов: - митохондрии окисляют органические соединения и аккумулируют химическую энергию; - эндоплазматическая сеть благодаря наличию специальных ферментов синтезирует жиры и углеводы, ее каналы способствуют транспорту веществ внутри клетки; - рибосомы синтезируют белок; - комплекс Гольджи концентрирует белок, уплотняет синтезированные жиры, полисахариды, образует лизосомы и готовит вещества к выведению их из клетки или непосредственному использованию внутри нее; - лизосомы расщепляют углеводы, белки, нуклеиновые кислоты и жиры, по сути, переваривая поступающие в клетку питательные вещества; - клеточный центр участвует в процессе деления клетки; - вакуоли, благодаря содержанию клеточного сока, поддерживают тургор клетки (внутреннее давление).

Строение клетки живого чрезвычайно сложно - на клеточном уровне протекает множество биохимических процессов, которые в совокупности обеспечивают жизнедеятельность организма.



Клеточная мембрана . Клетка (рис. 1.1) как живая система нуждается в поддержании определенных внутренних условий: концентрации различных веществ, температуры внутри клетки и др. Одни из этих параметров поддерживаются на неизменном уровне, так как их изменение приведет к гибели клетки, другие играют меньшее значение для сохранения ее жизнедеятельности.

Рис. 1.1.

Клеточная мембрана должна обеспечивать отграничение содержимого клетки от окружающей среды для поддержания необходимой концентрации веществ внутри клетки, в то же время она должна быть проницаемой для постоянного обмена веществ между клеткой и средой (рис. 1.2). Мембраны также ограничивают внутренние структуры клетки - органоиды (органеллы) - от цитоплазмы. Однако эго не просто разделительные барьеры. Клеточные мембраны сами по себе являются важнейшим органом клетки, обеспечивающим не только ее структуру, но и многие функции. Помимо разделения клеток между собой и отграничения от внешней среды мембраны объединяют клетки в ткани, регулируют обмен между клеткой и внешней средой, сами являются местом протекания многих биохимических реакций, служат передатчиками информации между клетками.

По современным данным, плазматические мембраны - это липопротеиновые структуры (липопротеины - соединения белковых и жировых молекул). Липиды (жиры) спонтанно образуют двойной слой, а мембранные белки «плавают» в нем, словно острова в океане. В мембранах присутствуют несколько тысяч различных белков: структурные, переносчики, ферменты и др. Кроме того, между белковыми молекулами имеются поры, сквозь которые могут проходить некоторые вещества. К поверхности мембраны подсоединены специальные гликозильные группы, которые участвуют в процессе распознавания клеток при образовании тканей.


Рис. 1.2.

Разные типы мембран отличаются по своей толщине (обычно она составляет от 5 до 10 нм). По консистенции мембраны напоминают оливковое масло. Важнейшее свойство клеточной мембраны - полупроницаемость », т.е. способность пропускать только определенные вещества. Прохождение различных веществ через плазматическую мембрану необходимо для доставки питательных веществ и кислорода в клетку, вывода токсичных отходов, создания разницы концентрации отдельных микроэлементов для поддержания нервной и мышечной активности. Механизмы транспорта веществ через мембрану:

  • диффузия - газы, жирорастворимые молекулы проникают прямо через плазматическую мембрану, в том числе облегченная диффузия, когда растворимое в воде вещество проходит через мембрану по особому каналу;
  • осмос - диффузия воды через полунепроницаемые мембраны в сторону более низкой концентрации ионов;
  • активный транспорт - перенос молекул из области с меньшей концентрацией в область с большей с помощью специальных транспортных белков;
  • эндоцитоз - перенос молекул с помощью пузырьков (вакуолей), образуемых втягиванием мембраны; различают фагоцитоз (поглощение твердых частиц) и ниноцитоз (поглощение жидкостей) (рис. 1.3);
  • экзоцитоз - процесс, обратный эндоцитозу; посредством него из клеток могут выводиться твердые частицы и жидкий секрет (рис. 1.4).

Диффузия и осмос не требуют дополнительной энергии; активный транспорт, эндоцитоз и экзоцитоз нуждаются в обеспечении энергией, которую клетка получает при расщеплении усвоенных ею питательных веществ.


Рис. 1.3.


Рис. 1.4.

Регуляция прохождения различных веществ через плазматическую мембрану является одной из ее важнейших функций. В зависимости от внешних условий структура мембраны может изменяться: она может становиться более жидкой, активной и проницаемой. Регулятором проницаемости мембран является жироподобное вещество холестерол.

Внешняя структура клетки поддерживается более плотной структурой - клеточной оболочкой. Клеточная оболочка может иметь самое различное строение (быть эластичной, иметь жесткий каркас, щетинки, усики и др.) и выполнять достаточно сложные функции.

Ядро имеется во всех клетках человеческого организма, за исключением эритроцитов. Как правило, клетка содержит только одно ядро, однако есть и исключения - например, клетки поперечнополосатых мышц содержат множество ядер. Ядро имеет шаровидную форму, его размеры колеблются от 10 до 20 мкм (рис. 1.5).

Ядро отграничено от цитоплазмы ядерной оболочкой , состоящей из двух мембран - наружной и внутренней, аналогичных клеточной мембране, и узкой щели между ними, содержащей полужидкую среду; через поры ядерной оболочки осуществляется интенсивный обмен веществ между ядром и цитоплазмой. На внешней мембране оболочки расположено множество рибосом - органоидов, синтезирующих белок.

Под ядерной оболочкой находится кариоплазма (ядерный сок), в которую поступают вещества из цитоплазмы. Кариоплазма содержит хромо го сомы (продолговатые структуры, содержащие ДНК, в которых «записана» информация о строении белков, специфичных для данной клетки, - наследственная, или генетическая, информация) и ядрышки (округлые структуры внутри ядра, в которых происходит формирование рибосом).

Рис. 1.5.

Совокупность хромосом, содержащихся в ядре, называют хромосомным набором. Число хромосом в соматических клетках четное - диплоидное (у человека это 44 аутосомы и 2 половые хромосомы, определяющие половую принадлежность), половые клетки, участвующие в оплодотворении, несут половинный набор (у человека 22 аутосомы и 1 половая хромосома) (рис. 1.6).

Рис. 1.6.

Важнейшей функцией ядра является передача генетической информации дочерним клеткам: при делении клетки ядро делится надвое, а находящаяся в нем ДЫК копируется (репликация ДНК) - это позволяет каждой дочерней клетке иметь полную информацию, полученную от исходной (материнской) клетки (см. Размножение клеток).

Цитоплазма (цитозоль) - студенистое вещество, содержащее около 90% воды, в котором расположены все органоиды, содержатся истинные и коллоидные растворы питательных веществ и нерастворимые отходы метаболических процессов, протекают биохимические процессы: гликолиз, синтез жирных кислот, нуклеиновых кислот и других веществ. Органоиды в цитоплазме движутся, цитоплазма сама также совершает периодическое активное движение - циклоз.

Клеточные структуры (органоиды , или органеллы) представляют собой «внутренние органы» клетки (табл. 1.1). Они обеспечивают процессы жизнедеятельности клетки, выработку клеткой определенных веществ (секрета, гормонов, ферментов), от их жизнедеятельности зависит общая активность тканей организма, способность выполнять специфические для данной ткани функции. Структуры клетки, как и сама клетка, проходят свои жизненные циклы: рождаются (создаются путем воспроизводства), активно функционируют, стареют и разрушаются. Большинство клеток организма способно восстанавливаться на субклеточном уровне за счет воспроизводства и обновления входящих в ее структуру органоидов.

Таблица 1.1

Клеточные органоиды, их строение и функции

Органоиды

Строение

Цитоплазма

Заключена в наружную мембрану, включает различные органоиды. Представлена коллоидным раствором солей и органических веществ, пронизана цитоскелетом (системой белковых нитей)

Объединяет все клеточные структуры в единую систему, обеспечивает среду для протекания биохимических реакций, обмен веществами и энергией в клетке

Наружная

клеточная

мембрана

Два слоя мономолекулярного белка, между которыми расположен бимолекулярный слой липидов, в липидном слое имеются отверстия - поры

Ограничивает клетку, разделяет ее с окружающей средой, обладает избирательной проницаемостью, активно регулирует обмен веществ и энергии с внешней средой, отвечает за соединение клеток в ткани, обеспечивает пиноцитоз и фагоцитоз; регулирует водный баланс клетки и выводит из нее «шлаки» - продукты жизнедеятельности

Эндоплазматическая сеть (ЭС)

Система трубочек, канальцев, цистерн, пузырьков, образованных ультрамикроскопичсскими мембранами, объединенная в единое целое с наружной мембраной

Транспорт веществ внутри клетки и между соседними клетками; разделение клетки на секторы, в которых могут проходить различные процессы.

Окончание табл. 1.1

Органоиды

Строение

ядерной оболочки и наружной клеточной мембраной. Гранулярная ЭС несет рибосомы, гладкая не имеет рибосом

Гранулярная ЭС участвует в синтезе белка. В каналах ЭС происходит синтез белка, жиров, транспорт АТФ

Рибосомы

Маленькие сферические органоиды, состоящие из РНК и белка

Осуществляют синтез белка

Микроскопические одномембранные органеллы, состоящие из стопочки

плоских цистерн, по краям которых ответвляются трубочки, отделяющие мелкие пузырьки

В пузырьках накапливаются продукты обменных процессов клетки. Упакованные в пузырьки, они поступают в цитоплазму и либо используются, либо выводятся наружу как шлаки

Л изосомы

Одномембраиные органоиды, число которых зависит от жизнедеятельности клетки. В лизосомах содержатся ферменты, образованные в рибосомах

Переваривание питательных веществ. Защитная функция. Автолиз (саморастворение орга- нелл и самой клетки в условиях пищевого или кислородного голодания)

В основе практически всех живых организмов лежит простейшая единица - клетка. Фото этой крошечной биосистемы, а также ответы на самые интересные вопросы вы сможете найти в этой статье. Какова структура и размеры клетки? Какие функции в организме она выполняет?

Клетка - это...

Ученым неизвестно определенное время возникновения первых живых клеток на нашей планете. В Австралии были найдены их остатки возрастом 3,5 миллиарда лет. Однако точно установить их биогенность так и не удалось.

Клетка - это простейшая единица в строении почти всех живых организмов. Исключением являются лишь вирусы и вироиды, которые относятся к неклеточным формам жизни.

Клетка - это структура, которая способна существовать автономно и самовоспроизводиться. Её размеры могут быть разными - от 0,1 до 100 мкм и более. Однако стоит отметить, что неоплодотворенные яйца пернатых тоже можно считать клетками. Таким образом, самой крупной по размеру клеткой на Земле можно считать страусиное яйцо. В диаметре оно может достигать 15 сантиметров.

Наука, изучающая особенности жизнедеятельности и структуру клетки организма, называется цитологией (или клеточной биологией).

Открытие и исследование клетки

Роберт Гук - английский ученый, который известен всем нам из школьного курса физики (именно он открыл закон о деформации упругих тел, который был назван его именем). Помимо этого, именно он первым увидел живые клетки, рассматривая через свой микроскоп срезы пробкового дерева. Они напомнили ему пчелиные соты, поэтому он назвал их cell, что в переводе с английского означает "ячейка".

Клеточная структура растений была подтверждена позже (в конце XVII столетия) многими исследователями. А вот на организмы животных клеточная теория была распространена лишь в начале XIX века. Примерно тогда же ученые всерьез заинтересовались содержимым (структурой) клеток.

Детально рассмотреть клетку и её структуру позволили мощные световые микроскопы. Они до сих пор остаются основным инструментом в исследовании этих систем. А появление в прошлом столетии электронных микроскопов дало возможность биологам изучать и ультраструктуру клеток. Среди методов их исследования также можно выделить биохимические, аналитические и препаративные. Также вы можете узнать, как выглядит живая клетка, - фото приведено в статье.

Химическая структура клетки

В состав клетки входит множество различных веществ:

  • органогены;
  • макроэлементы;
  • микро- и ультрамикроэлементы;
  • вода.

Около 98% химического состава клетки составляют так называемые органогены (углерод, кислород, водород и азот), еще 2% - макроэлементы (магний, железо, кальций и другие). Микро- и ультрамикроэлементы (цинк, марганец, уран, йод и т. д.) - не более 0,01% всей клетки.

Прокариоты и эукариоты: основные отличия

Исходя из особенностей структуры клетки, все живые организмы на Земле делятся на два надцарства:

  • прокариоты - более примитивные организмы, которые сформировались эволюционным путем;
  • эукариоты - организмы, клеточное ядро которых является полностью оформленным (организм человека также относится к эукариотам).

Основные отличия клетки эукариотов от прокариотов:

  • более крупные размеры (10-100 мкм);
  • способ деления (мейоз или митоз);
  • тип рибосом (80S-рибосомы);
  • тип жгутиков (в клетках организмов эукариотов жгутики состоят из микротрубочек, которые окружены мембраной).

Строение клетки эукариота

В структуру эукариотической клетки входят следующие органоиды:

  • ядро;
  • цитоплазма;
  • аппарат Гольджи;
  • лизосомы;
  • центриоли;
  • митохондрии;
  • рибосомы;
  • везикулы.

Ядро - это главный структурный элемент клетки эукариота. Именно в нем хранится вся генетическая информация о конкретном организме (в молекулах ДНК).

Цитоплазма - особое вещество, в котором содержится ядро и все остальные органоиды. Благодаря специальной сети микротрубочек, она обеспечивает перемещение веществ внутри клетки.

Аппарат Гольджи - это система плоских цистерн, в которых постоянно созревают белки.

Лизосомы - маленькие тельца с одиночной мембраной, основная функция которых - расщеплять отдельные органоиды клетки.

Рибосомы - универсальные ультрамикроскопические органоиды, предназначением которых является синтез белков.

Митохондрии - это своеобразные "легкие" клетки, а также её главный источник энергии.

Основные функции клетки

Клетка живого организма призвана выполнять несколько важнейших функций, обеспечивающих жизнедеятельность этого самого организма.

Важнейшей функцией клетки является обмен веществ. Так, именно она расщепляет сложные вещества, превращая их в простые, а также синтезирует более сложные соединения.

Кроме этого, все клетки способны реагировать на воздействие внешних раздражающих факторов (температура, свет и так далее). Большинство из них также имеют способность к регенерации (самовосстановлению) при помощи деления.

Нервные клетки также могут реагировать на внешние раздражители посредством образования биоэлектрических импульсов.

Все вышеназванные функции клетки обеспечивают жизнедеятельность организма.

Заключение

Итак, клетка - это наименьшая элементарная живая система, которая является основной единицей в строении любого организма (животного, растения, бактерии). В её строении выделяют ядро и цитоплазму, в которой содержатся все органоиды (клеточные структуры). Каждый из них выполняет свои определенные функции.

Размер клетки колеблется в широких пределах - от 0,1 до 100 микрометров. Особенности строения и жизнедеятельности клеток изучает специальная наука - цитология.

Клетка — это основная структурная и функциональная единица всех живых организмов, кроме вирусов. Она имеет специфическое строение, включающее множество составляющих, которые выполняют определенные функции.

Какая наука изучает клетку?

Всем известно, что наука о живых организмах - биология. Строение клетки изучает ее отрасль - цитология.

Из чего состоит клетка?

Данная структура состоит из мембраны, цитоплазмы, органоидов, или органелл, и ядра (в прокариотических клетках отсутствует). Строение клеток организмов, относящихся к разным классам, немного различается. Существенные отличия наблюдаются между структурой клеток эукариотов и прокариотов.

Плазматическая мембрана

Мембрана играет очень важную роль — она отделяет и защищает содержимое клетки от внешней среды. Она состоит из трех слоев: двух белковых и среднего фосфолипидного.

Клеточная стенка

Еще одна структура, защищающая клетку от воздействия внешних факторов, расположена поверх плазматической мембраны. Присутствует в клетках растений, бактерий и грибов. У первых она состоит из целлюлозы, у вторых — из муреина, у третьих — из хитина. В животных клетках поверх мембраны расположен гликокаликс, который состоит из гликопротеидов и полисахаридов.

Цитоплазма

Она представляет собой все пространство клетки, ограниченное мембраной, за исключением ядра. Цитоплазма включает органоиды, которые выполняют основные функции, отвечающие за жизнедеятельность клетки.

Органеллы и их функции

Строение клетки живого организма подразумевает ряд структур, каждая из которых выполняет определенную функцию. Они называются органеллами, или органоидами.

Митохондрии

Их можно назвать одними из самых важных органелл. Митохондрии отвечают за синтез энергии, необходимой для жизнедеятельности. Кроме того, они участвуют в процессе синтеза некоторых гормонов и аминокислот.

Энергия в митохондриях вырабатывается вследствие окисления молекул АТФ, которое происходит при помощи специального фермента под названием АТФ-синтаза. Митохондрии представляют собой округлые или палочковидные структуры. Их количество в животной клетке, в среднем, составляет 150-1500 штук (это зависит от ее предназначения). Они состоят из двух мембран и матрикса — полужидкой массы, заполняющей внутреннее пространство органеллы. Основной составляющей оболочек являются белки, также в их структуре присутствуют фосфолипиды. Пространство между мембранами заполнено жидкостью. В матриксе митохондрий находятся зерна, которые накапливают определенные вещества, такие как ионы магния и кальция, необходимые для выработки энергии, и полисахариды. Также эти органеллы имеют собственный аппарат биосинтеза белка , похожий на таковой у прокариотов. Он состоит из митохондриальной ДНК, набора ферментов, рибосом и РНК. Строение клетки прокариотов имеет свои особенности: митохондрий в ней нет.

Рибосомы

Эти органеллы состоят из рибосомальной РНК (рРНК) и белков. Благодаря им осуществляется трансляция — процесс синтеза белков на матрице иРНК (информационной РНК). В одной клетке может содержаться до десяти тысяч данных органоидов. Рибосомы состоят из двух частей: маленькой и большой, которые объединяются непосредственно в присутствии иРНК.

Рибосомы, которые участвуют в синтезе белков, необходимых для самой клетки, сконцентрированы в цитоплазме. А те, с помощью которых вырабатываются белки, транспортируемые за пределы клетки, располагаются на плазматической мембране.

Комплекс Гольджи

Он присутствует только в клетках эукариотов. Данная органелла состоит из диктосом, количество которых обычно составляет приблизительно 20, но может доходить и до нескольких сотен. Аппарат Гольджи входит в строение клетки только эукариотических организмов. Он расположен около ядра и выполняет функцию синтеза и хранения определенных веществ, к примеру, полисахаридов. В нем образуются лизосомы, о которых пойдет речь ниже. Также эта органелла является частью выделительной системы клетки. Диктосомы представлены в виде стопок из сплющенных цистерн дискообразной формы. На краях этих структур образуются пузырьки, где находятся вещества, которые необходимо вывести из клетки.

Лизосомы

Эти органоиды представляют собой маленькие пузырьки с набором ферментов. Их структура имеет одну мембрану, покрытую сверху слоем белка. Функция, которую выполняют лизосомы, заключается во внутриклеточном переваривании веществ. Благодаря ферменту гидролазе с помощью указанных органоидов расщепляются жиры, белки, углеводы, нуклеиновые кислоты.

Эндоплазматическая сеть (ретикулум)

Строение клетки всех эукариотических клеток подразумевает и наличие ЭПС (эндоплазматической сети). Эндоплазматический ретикулум состоит из трубочек и сплющенных полостей, имеющих мембрану. Этот органоид бывает двух видов: шероховатая и гладкая сеть. Первая отличается тем, что к ее мембране крепятся рибосомы, вторая такой особенности не имеет. Шероховатая эндоплазматическая сеть выполняет функцию синтеза белков и липидов, которые требуются для формирования клеточной мембраны или для других целей. Гладкая принимает участие в выработке жиров, углеводов, гормонов и других веществ, кроме белков. Также эндоплазматический ретикулум выполняет функцию транспортировки веществ по клетке.

Цитоскелет

Он состоит из микротрубочек и микрофиламентов (актиновых и промежуточных). Составляющие цитоскелета представляют собой полимеры белков, в основном, актина, тубулина или кератина. Микротрубочки служат для поддержания формы клетки, они формируют органы движения у простейших организмов, таких как инфузории, хламидомонады, эвглены и т. д. Актиновые микрофиламенты также играют роль каркаса. Кроме того, они участвуют в процессе перемещения органелл. Промежуточные в разных клетках построены из различных белков. Они поддерживают форму клетки, а также закрепляют ядро и другие органеллы в постоянном положении.

Клеточный центр

Состоит из центриолей, которые имеют форму полого цилиндра. Его стенки образованы из микротрубочек. Эта структура участвует в процессе деления, обеспечивая распределение хромосом между дочерними клетками.

Ядро

В клетках эукариотов это один из важнейших органоидов. В нем хранится ДНК, в которой зашифрована информация обо всем организме, о его свойствах, о белках, которые должны синтезироваться клеткой, и т. д. Оно состоит из оболочки, которая защищает генетический материал, ядерного сока (матрикса), хроматина и ядрышка. Оболочка сформирована из двух пористых мембран, расположенных на некотором расстоянии друг от друга. Матрикс представлен белками, он образует внутри ядра благоприятную среду для хранения наследственной информации. В ядерном соке содержатся нитчатые белки, служащие опорой, а также РНК. Также здесь присутствует хроматин — интерфазная форма существования хромосом. Во время деления клетки из глыбок он превращается в палочковидные структуры.

Ядрышко

Это обособленная часть ядра, отвечающая за формирование рибосомальной РНК.

Органеллы, присущие только растительным клеткам

Клетки растений имеют некоторые органоиды, которые не свойственны больше ни для каких организмов. К ним относятся вакуоли и пластиды.

Вакуоль

Это своеобразный резервуар, где хранятся запасные питательные вщеества, а также продукты жизнедеятельности, которые не могут быть выведены наружу из-за плотной клеточной стенки. Она отделяется от цитоплазмы специфической мембраной, которая называется тонопластом. По мере того как функционирует клетка, отдельные небольшие вакуоли сливаются в одну большую — центральную.

Пластиды

Эти органоиды делятся на три группы: хлоропласты, лейкопласты и хромопласты.

Хлоропласты

Это важнейшие органоиды растительной клетки. Благодаря им осуществляется фотосинтез, в процессе которого клетка получает нужные ей питательные вещества. Хлоропласты имеют две мембраны: внешнюю и внутреннюю; матрикс — вещество, которым заполнено внутреннее пространство; собственную ДНК и рибосомы; зерна крахмала; граны. Последние состоят из стопок тилакоидов с хлорофиллом, окруженных мембраной. Именно в них и происходит процесс фотосинтеза.

Лейкопласты

Эти структуры состоят из двух мембран, матрикса, ДНК, рибосом и тилакоидов, но последние не содержат хлорофилл. Лейкопласты выполняют запасную функцию, накапливая питательные вещества. В них содержатся специальные ферменты, позволяющие получать из глюкозы крахмал, который, собственно, и служит запасным веществом.

Хромопласты

Данные органоиды имеют такую же структуру, как и описанные выше, однако в них нет тилакоидов, но есть каротиноиды, которые имеют специфическую окраску и расположены непосредственно возле мембраны. Именно благодаря этим структурам лепестки цветов окрашены в определенный цвет, позволяющий привлекать насекомых-опылителей.

Клетка - элементарная живая система, основная структурная и функциональная единица организма, способная к самообновлению, саморегуляции и самовоспроизведению.

Жизненные свойства клетки человека

К основным жизненным свойствам клетки относят: обмен веществ, биосинтез, размножение, раздражимость, выделение, питание, дыхание, рост и распад органических соединений.

Химический состав клетки

Основные химические элементы клетки: Кислород (О), Сера (S), Фосфор (Р), Углерод (С), Калий (К), Хлор (Сl), Водород (Н), Железо (Fe), Натрий (Na), Азот (N), Кальций (Са), Магний (Mg)

Органические вещества клетки

Название веществ

Из каких эле-ментов (веществ) состоят

Функции веществ

Углеводы

Углерод, водо-род, кислород.

Основные источники энергии для осуществления всех жиз-ненных процессов.

Углерод, водо-род, кислород.

Входят в состав всех клеточных мембран, служат запасным ис-точником энергии в организме.

Углерод, водород, ки-слород, азот, сера, фосфор.

1. Главный строительный материал клетки;

2. ускоряют течение химических реакций в организме;

3. запасной источник энергии для организма.

Нуклеиновые кислоты

Углерод, водо-род, кисло-род, азот, фосфор.

ДНК - определяет состав бел-ков клетки и передачу наслед-ственных признаков и свойств следующим поколениям;

РНК - образование характерных для данной клетки белков.

АТФ (аденозинтрифосфат)

Рибоза, аденин, фосфорная кислота

Обеспечивает запас энергии, участвует в построении нуклеиновых кислот

Размножение клетки (деление клетки) человека

Размножение клеток в человеческом организме происходит путем непрямого деления. В результате дочерний организм получает такой-же набор хромосом, как материнский. Хромосомы - носители наследственных свойств организма, передающихся от родителей потомству.

Этап размножения (фазы деления)

Характеристика

Подготовительная

Перед делением число хромосом удваивается. Запасается энергия и вещества, необходимые для деления.

Начало деления. Центриоли клеточного центра расходятся к полюсам клетки. Хромосомы утолщаются и укорачиваются. Ядерная оболочка растворяется. Из клеточного центра образуется веретено деления.

Удвоенные хромосомы размещаются в плоскости экватора клетки. К каждой, хромосоме, прикрепляются плотные нити, которые тянутся от центриолей.

Нити сокращаются, и хромосомы расходятся к полюсам клетки.

Четвертая

Конец деления. Делится все содержимое клетки и цитоплазма. Хромосомы удлиняются и становятся неразличимыми. Формируется ядерная оболочка, на теле клетки возникает перетяжка, которая постепенно углубляется, разделяя клетку надвое. Образуются две дочерние клетки.

Строение клетки человека человека

У животной клетки, в отличие от растительной, имеется клеточный центр, яо отсутствуют: плотная клеточная стенка, поры в клеточной стенке, пластиды(хлоропласты, хромопласты, лейкопласты) и вакуоли с клеточным соком.

Клеточные структуры

Особенности строения

Основные функции

Плазматическая мембрана

Билипидныи (жировой) слой, окруженный бел новым 1 слоями

Обмен веществ между клетками и межклеточным веществом

Цитоплазма

Вязкое полужидкое вещество, в котором располагаютсу органоиды клетки

Внутренняя среда клетки. Взаимосвязь всех частей клетки и транспорт питательных веществ

Ядро с ядрышком

Тельце, ограниченное ядерной оболочкой, с хроматином (тип и ДНК). Ядрышко находится внутри ядра, принимает участие в синтезе белков.

Контролирующий центр клетки. Передача информации дочерним клеткам с помощью хромосом при делении

Клеточный центр

Участок более густой цитоплазмы с центриолями (и цилиндричсекие тельца)

Участвует в делении клеток

Эндоплазматическая сеть

Сеть канальцев

Синтез и транспорт питательных веществ

Рибосомы

Плотные тельца, содержащие белок и РНК

В них синтезируется белок

Лизосомы

Округлые тельца, внутри которых находятся ферменты

Расщепляют белки, жиры, углеводы

Митохондрии

Утолщённые тельца с внутренними складками (кристами)

В них находятся,ферменты, при помощи которых пи-тательные вещества расщепляются, а энергия запаса-ется в виде особого вещества - АТФ.

Аппарат Гольджи

С топка плоских мембранных мешочков

Образование лизосом

_______________

Источник информации:

Биология в таблицах и схемах./ Издание 2е, - СПб.: 2004.

Резанова Е.А. Биология человека. В таблицах и схемах./ М.: 2008.